目次
#1. 選択範囲の並べ替え
四、归并排序
五、排序算法的分析
ホームページ Java &#&チュートリアル Java データ構造の 7 つのソート方法の使用方法

Java データ構造の 7 つのソート方法の使用方法

Jun 02, 2023 pm 07:19 PM
java

    ##1. 挿入ソート

    1. 直接挿入ソート

    i 番目 (i>=1) 要素を挿入する場合、先ほどのarray[0]、array[1]、...、array[i-1]はソートされていますので、今回はarray[i]とarray[i-1]、array[i-2]、を使用します。 .. 比較して挿入位置を見つけ、array[i]を挿入し、元の位置の要素を後方に移動します。

    データの順序が近いほど、sort を直接挿入するのにかかる時間が短くなります。

    時間計算量: O(N^2)

    空間計算量 O(1) は安定したアルゴリズムです

    直接挿入ソート:

    Java データ構造の 7 つのソート方法の使用方法

        public static void insertSort(int[] array){
            for (int i = 1; i < array.length; i++) {
                int tmp=array[i];
                int j=i-1;
                for(;j>=0;--j){
                    if(array[j]>tmp){
                        array[j+1]=array[j];
                    }else{
                        break;
                    }
                }
                array[j+1]=tmp;
            }
        }
    ログイン後にコピー

    2. ヒル ソート

    ヒル ソート方法の基本的な考え方は、まず整数ギャップを選択し、ソートするファイル内のすべてのレコードをギャップ グループに分割し、すべてのレコードをギャップ グループに分割します。ギャップの距離を持つ数値は同じグループに属し、各グループの数値が直接挿入されて並べ替えられます。次に、gap=gap/2 を取得し、上記のグループ化と並べ替えの作業を繰り返します。ギャップ=1 の場合、すべての数値はグループ内で直接並べ替えられます。

    • ヒル ソートは、直接挿入ソートを最適化したものです。

    • 目的は、配列を順序に近づけることであるため、ギャップ > 1 の場合は事前ソートが実行されます。挿入ソートは、ギャップが 1 の場合、ほぼ順序付けされた配列を迅速にソートできます。

    • ヒル ソートの時間計算量は計算が困難です。これは、ギャップ値を取得する方法が多数あり、計算が困難であるためです。

    • # ヒルの並べ替え:

    public static void shellSort(int[] array){
            int size=array.length;
            //这里定义gap的初始值为数组长度的一半
            int gap=size/2;
            while(gap>0){
                //间隔为gap的直接插入排序
                for (int i = gap; i < size; i++) {
                    int tmp=array[i];
                    int j=i-gap;
                    for(;j>=0;j-=gap){
                        if(array[j]>tmp){
                            array[j+gap]=array[j];
                        }else{
                            break;
                        }
                    }
                    array[j+gap]=tmp;
                }
                gap/=2;
            }
        }
    ログイン後にコピー
    Java データ構造の 7 つのソート方法の使用方法2. 選択範囲の並べ替え

    #1. 選択範囲の並べ替え

      要素セット array[i]--array[n-1]
    • #このセットの最初の要素でない場合は、要素セット内の最小のデータ要素を選択します要素を 1 つ追加し、それをこの要素セットの最初の要素と交換します。
    • #残りのセットでは、セットに 1 つの要素が残るまで上記の手順を繰り返します

    • 時間計算量: O(N^2)

    • 空間計算量は O(1)、不安定です

    選択の並べ替え:

    #
        //交换
        private static void swap(int[] array,int i,int j){
            int tmp=array[i];
            array[i]=array[j];
            array[j]=tmp;
        }
        //选择排序
        public static void chooseSort(int[] array){
            for (int i = 0; i < array.length; i++) {
                int minIndex=i;//记录最小值的下标
                for (int j = i+1; j < array.length; j++) {
                    if (array[j]<array[minIndex]) {
                        minIndex=j;
                    }
                }
                swap(array,i,minIndex);
            }
        }
    ログイン後にコピー

    2. ヒープ ソート

    ヒープ ソートに関する 2 つのアイデア (例として昇順):Java データ構造の 7 つのソート方法の使用方法

    小さなルート ヒープを作成します。 order ヒープの先頭要素を取り出し、ヒープが空になるまで配列に入れます。

    • 大きなルート ヒープを作成し、ヒープの末尾要素の位置キーを定義し、交換します。キーがヒープの先頭に到達するまで、ヒープの先頭の要素とキーの位置にある要素 (key --) が毎回実行されます。このとき、ヒープ内の要素の順次走査は昇順になります (次のように)以下)

    • 時間計算量: O(N^2)

      空間計算量: O(N)、不安定
    ヒープ ソート:

        //向下调整
        public static void shiftDown(int[] array,int parent,int len){
            int child=parent*2+1;
            while(child<len){
                if(child+1<len){
                    if(array[child+1]>array[child]){
                        child++;
                    }
                }
                if(array[child]>array[parent]){
                    swap(array,child,parent);
                    parent=child;
                    child=parent*2+1;
                }else{
                    break;
                }
     
            }
        }
        //创建大根堆
        private static void createHeap(int[] array){
            for (int parent = (array.length-1-1)/2; parent >=0; parent--) {
                shiftDown(array,parent,array.length);
            }
        }
        //堆排序
        public static void heapSort(int[] array){
            //创建大根堆
            createHeap(array);
            //排序
            for (int i = array.length-1; i >0; i--) {
                swap(array,0,i);
                shiftDown(array,0,i);
            }
        }
    ログイン後にコピー

    3. Exchange sort

    1 、バブルソートJava データ構造の 7 つのソート方法の使用方法

    2 レベルのループ、最初のレベルのループは、交換の回数を示します。ソートされ、第 2 レベルのループは各パスで行われる比較の数を示します。ここでのバブル ソートは最適化されており、各パスで比較するときに、データ交換の数を記録するカウンターを定義できます。は交換ではありません。これは、データがすでに整っていて、それ以上の並べ替えが必要ないことを意味します。

    時間計算量: O(N^2)

    空間計算量は O(1) で、これは安定したソートです

    バブル ソート:

       public static void bubbleSort(int[] array){
            for(int i=0;i<array.length-1;++i){
                int count=0;
                for (int j = 0; j < array.length-1-i; j++) {
                    if(array[j]>array[j+1]){
                        swap(array,j,j+1);
                        count++;
                    }
                }
                if(count==0){
                    break;
                }
            }
        }
    ログイン後にコピー

    2. クイック ソート

    並べ替える要素のシーケンス内の任意の要素を基本値として取得し、並べ替えコードに従って並べ替えるセットを 2 つのサブシーケンスに分割します。左側のサブシーケンスのすべての要素が基本値より小さく、右側のサブシーケンスのすべての要素が基本値より大きい場合、すべての要素が対応する位置に配置されるまで、このプロセスが左右のサブシーケンスに対して繰り返されます。 Java データ構造の 7 つのソート方法の使用方法

    時間計算量: 最良の O (N*Logn): 毎回ソートされるシーケンスを均等に分割することを試みることができます。順序付き

    空間計算量: 最良の O(logn)、最悪の O (N)。不安定なソート

    (1) 穴掘り法

    データが整然としている場合、クイックソートは左右の部分木のない二分木と同等となり、このとき空間複雑度はO(N)、大量のデータをソートすると、スタック オーバーフローが発生する可能性があります。

    public static void quickSort(int[] array,int left,int right){
            if(left>=right){
                return;
            }
            int l=left;
            int r=right;
            int tmp=array[l];
            while(l<r){
                while(array[r]>=tmp&&l<r){
                //等号不能省略,如果省略,当序列中存在相同的值时,程序会死循环
                    r--;
                }
                array[l]=array[r];
                while(array[l]<=tmp&&l<r){
                    l++;
                }
                array[r]=array[l];
            }
            array[l]=tmp;
            quickSort(array,0,l-1);
            quickSort(array,l+1,right);
        }
    ログイン後にコピー

    (2) クイックソートの最適化

    3つの数値の中間の方法でキーを選択します

    キー値の選択については、ソートする順序が次の場合、最初または最後のキーをキーとして選択すると、分割の左側または右側が空になる可能性があり、この場合、クイックソートのスペースの複雑さが比較的大きくなり、スタックオーバーフローが発生しやすくなります。そうすれば、この状況を解消するには、3 ナンバー法を使用できます。シーケンス内の最初、最後、中間の要素の中央の値がキー値として使用されます。

     //key值的优化,只在快速排序中使用,则可以为private
        private int threeMid(int[] array,int left,int right){
            int mid=(left+right)/2;
            if(array[left]>array[right]){
                if(array[mid]>array[left]){
                    return left;
                }
                return array[mid]<array[right]?right:mid;
            }else{
                if(array[mid]<array[left]){
                    return left;
                }
                return array[mid]>array[right]?right:mid;
            }
        }
    ログイン後にコピー

    小さな部分範囲を再帰する場合は、挿入ソートの使用を検討できます

    随着我们递归的进行,区间会变的越来越小,我们可以在区间小到一个值的时候,对其进行插入排序,这样代码的效率会提高很多。

    (3)快速排序的非递归实现

     //找到一次划分的下标
        public static int patition(int[] array,int left,int right){
            int tmp=array[left];
            while(left<right){
                while(left<right&&array[right]>=tmp){
                    right--;
                }
                array[left]=array[right];
                while(left<right&&array[left]<=tmp){
                    left++;
                }
                array[right]=array[left];
            }
            array[left]=tmp;
            return left;
        }
        //快速排序的非递归
        public static void quickSort2(int[] array){
            Stack<Integer> stack=new Stack<>();
            int left=0;
            int right=array.length-1;
            stack.push(left);
            stack.push(right);
            while(!stack.isEmpty()){
                int r=stack.pop();
                int l=stack.pop();
                int p=patition(array,l,r);
                if(p-1>l){
                    stack.push(l);
                    stack.push(p-1);
                }
                if(p+1<r){
                    stack.push(p+1);
                    stack.push(r);
                }
            }
        }
    ログイン後にコピー

    四、归并排序

    归并排序(MERGE-SORT):该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。实现序列的完全有序,需要将已经有序的子序列合并,即先让每个子序列有序,然后再将相邻的子序列段有序。若将两个有序表合并成一个有序表,称为二路归并。

    时间复杂度:O(n*logN)(无论有序还是无序)

    空间复杂度:O(N)。是稳定的排序。

    Java データ構造の 7 つのソート方法の使用方法

        //归并排序:递归
        public static void mergeSort(int[] array,int left,int right){
            if(left>=right){
                return;
            }
            int mid=(left+right)/2;
            //递归分割
            mergeSort(array,left,mid);
            mergeSort(array,mid+1,right);
            //合并
            merge(array,left,right,mid);
        }
        //非递归
        public static void mergeSort1(int[] array){
            int gap=1;
            while(gap<array.length){
                for (int i = 0; i < array.length; i+=2*gap) {
                    int left=i;
                    int mid=left+gap-1;
                    if(mid>=array.length){
                        mid=array.length-1;
                    }
                    int right=left+2*gap-1;
                    if(right>=array.length){
                        right=array.length-1;
                    }
                    merge(array,left,right,mid);
                }
                gap=gap*2;
            }
        } 
        //合并:合并两个有序数组
        public static void merge(int[] array,int left,int right,int mid){
            int[] tmp=new int[right-left+1];
            int k=0;
            int s1=left;
            int e1=mid;
            int s2=mid+1;
            int e2=right;
            while(s1<=e1&&s2<=e2){
                if(array[s1]<=array[s2]){
                    tmp[k++]=array[s1++];
                }else{
                    tmp[k++]=array[s2++];
                }
            }
            while(s1<=e1){
                tmp[k++]=array[s1++];
            }
            while(s2<=e2){
                tmp[k++]=array[s2++];
            }
            for (int i = left; i <= right; i++) {
                array[i]=tmp[i-left];
            }
        }
    ログイン後にコピー

    五、排序算法的分析

    排序方法 最好时间复杂度 最坏时间复杂度 空间复杂度 稳定性
    直接插入排序 O(n) O(n^2) O(1) 稳定
    希尔排序 O(n) O(n^2) O(1) 不稳定
    直接排序 O(n^2) O(n^2) O(1) 不稳定
    堆排序 O(nlog(2)n) O(nlog(2)n) O(1) 不稳定
    冒泡排序 O(n) O(n^2) O(1) 稳定
    快速排序 O(nlog(2)n) O(n^2) O(nlog(2)n) 不稳定
    归并排序 O(nlog(2)n) O(nlog(2)n) O(n) 稳定

    以上がJava データ構造の 7 つのソート方法の使用方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

    このウェブサイトの声明
    この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

    ホットAIツール

    Undresser.AI Undress

    Undresser.AI Undress

    リアルなヌード写真を作成する AI 搭載アプリ

    AI Clothes Remover

    AI Clothes Remover

    写真から衣服を削除するオンライン AI ツール。

    Undress AI Tool

    Undress AI Tool

    脱衣画像を無料で

    Clothoff.io

    Clothoff.io

    AI衣類リムーバー

    Video Face Swap

    Video Face Swap

    完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

    ホットツール

    メモ帳++7.3.1

    メモ帳++7.3.1

    使いやすく無料のコードエディター

    SublimeText3 中国語版

    SublimeText3 中国語版

    中国語版、とても使いやすい

    ゼンドスタジオ 13.0.1

    ゼンドスタジオ 13.0.1

    強力な PHP 統合開発環境

    ドリームウィーバー CS6

    ドリームウィーバー CS6

    ビジュアル Web 開発ツール

    SublimeText3 Mac版

    SublimeText3 Mac版

    神レベルのコード編集ソフト(SublimeText3)

    Java 8 Stream Foreachから休憩または戻ってきますか? Java 8 Stream Foreachから休憩または戻ってきますか? Feb 07, 2025 pm 12:09 PM

    Java 8は、Stream APIを導入し、データ収集を処理する強力で表現力のある方法を提供します。ただし、ストリームを使用する際の一般的な質問は次のとおりです。 従来のループにより、早期の中断やリターンが可能になりますが、StreamのForeachメソッドはこの方法を直接サポートしていません。この記事では、理由を説明し、ストリーム処理システムに早期終了を実装するための代替方法を調査します。 さらに読み取り:JavaストリームAPIの改善 ストリームを理解してください Foreachメソッドは、ストリーム内の各要素で1つの操作を実行する端末操作です。その設計意図はです

    PHP:Web開発の重要な言語 PHP:Web開発の重要な言語 Apr 13, 2025 am 12:08 AM

    PHPは、サーバー側で広く使用されているスクリプト言語で、特にWeb開発に適しています。 1.PHPは、HTMLを埋め込み、HTTP要求と応答を処理し、さまざまなデータベースをサポートできます。 2.PHPは、ダイナミックWebコンテンツ、プロセスフォームデータ、アクセスデータベースなどを生成するために使用され、強力なコミュニティサポートとオープンソースリソースを備えています。 3。PHPは解釈された言語であり、実行プロセスには語彙分析、文法分析、編集、実行が含まれます。 4.PHPは、ユーザー登録システムなどの高度なアプリケーションについてMySQLと組み合わせることができます。 5。PHPをデバッグするときは、error_reporting()やvar_dump()などの関数を使用できます。 6. PHPコードを最適化して、キャッシュメカニズムを使用し、データベースクエリを最適化し、組み込み関数を使用します。 7

    PHP対Python:違いを理解します PHP対Python:違いを理解します Apr 11, 2025 am 12:15 AM

    PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHPは、シンプルな構文と高い実行効率を備えたWeb開発に適しています。 2。Pythonは、簡潔な構文とリッチライブラリを備えたデータサイエンスと機械学習に適しています。

    PHP対その他の言語:比較 PHP対その他の言語:比較 Apr 13, 2025 am 12:19 AM

    PHPは、特に迅速な開発や動的なコンテンツの処理に適していますが、データサイエンスとエンタープライズレベルのアプリケーションには良くありません。 Pythonと比較して、PHPはWeb開発においてより多くの利点がありますが、データサイエンスの分野ではPythonほど良くありません。 Javaと比較して、PHPはエンタープライズレベルのアプリケーションでより悪化しますが、Web開発により柔軟性があります。 JavaScriptと比較して、PHPはバックエンド開発により簡潔ですが、フロントエンド開発のJavaScriptほど良くありません。

    PHP対Python:コア機能と機能 PHP対Python:コア機能と機能 Apr 13, 2025 am 12:16 AM

    PHPとPythonにはそれぞれ独自の利点があり、さまざまなシナリオに適しています。 1.PHPはWeb開発に適しており、組み込みのWebサーバーとRich Functionライブラリを提供します。 2。Pythonは、簡潔な構文と強力な標準ライブラリを備えたデータサイエンスと機械学習に適しています。選択するときは、プロジェクトの要件に基づいて決定する必要があります。

    カプセルの量を見つけるためのJavaプログラム カプセルの量を見つけるためのJavaプログラム Feb 07, 2025 am 11:37 AM

    カプセルは3次元の幾何学的図形で、両端にシリンダーと半球で構成されています。カプセルの体積は、シリンダーの体積と両端に半球の体積を追加することで計算できます。このチュートリアルでは、さまざまな方法を使用して、Javaの特定のカプセルの体積を計算する方法について説明します。 カプセルボリュームフォーミュラ カプセルボリュームの式は次のとおりです。 カプセル体積=円筒形の体積2つの半球体積 で、 R:半球の半径。 H:シリンダーの高さ(半球を除く)。 例1 入力 RADIUS = 5ユニット 高さ= 10単位 出力 ボリューム= 1570.8立方ユニット 説明する 式を使用してボリュームを計算します。 ボリューム=π×R2×H(4

    PHPの影響:Web開発など PHPの影響:Web開発など Apr 18, 2025 am 12:10 AM

    phphassiblasifly-impactedwebdevevermentandsbeyondit.1)itpowersmajorplatformslikewordpratsandexcelsindatabase interactions.2)php'sadaptableability allowsitale forlargeapplicationsusingframeworkslikelavel.3)

    PHP:多くのウェブサイトの基礎 PHP:多くのウェブサイトの基礎 Apr 13, 2025 am 12:07 AM

    PHPが多くのWebサイトよりも優先テクノロジースタックである理由には、その使いやすさ、強力なコミュニティサポート、広範な使用が含まれます。 1)初心者に適した学習と使用が簡単です。 2)巨大な開発者コミュニティと豊富なリソースを持っています。 3)WordPress、Drupal、その他のプラットフォームで広く使用されています。 4)Webサーバーとしっかりと統合して、開発の展開を簡素化します。

    See all articles