Java データ構造の 7 つのソート方法の使用方法
public static void insertSort(int[] array){ for (int i = 1; i < array.length; i++) { int tmp=array[i]; int j=i-1; for(;j>=0;--j){ if(array[j]>tmp){ array[j+1]=array[j]; }else{ break; } } array[j+1]=tmp; } }
- ヒル ソートは、直接挿入ソートを最適化したものです。
- 目的は、配列を順序に近づけることであるため、ギャップ > 1 の場合は事前ソートが実行されます。挿入ソートは、ギャップが 1 の場合、ほぼ順序付けされた配列を迅速にソートできます。
- ヒル ソートの時間計算量は計算が困難です。これは、ギャップ値を取得する方法が多数あり、計算が困難であるためです。 # ヒルの並べ替え:
public static void shellSort(int[] array){ int size=array.length; //这里定义gap的初始值为数组长度的一半 int gap=size/2; while(gap>0){ //间隔为gap的直接插入排序 for (int i = gap; i < size; i++) { int tmp=array[i]; int j=i-gap; for(;j>=0;j-=gap){ if(array[j]>tmp){ array[j+gap]=array[j]; }else{ break; } } array[j+gap]=tmp; } gap/=2; } }

#1. 選択範囲の並べ替え
- 要素セット array[i]--array[n-1]
- #このセットの最初の要素でない場合は、要素セット内の最小のデータ要素を選択します要素を 1 つ追加し、それをこの要素セットの最初の要素と交換します。
#残りのセットでは、セットに 1 つの要素が残るまで上記の手順を繰り返します
時間計算量: O(N^2)
空間計算量は O(1)、不安定です
選択の並べ替え:
#//交换 private static void swap(int[] array,int i,int j){ int tmp=array[i]; array[i]=array[j]; array[j]=tmp; } //选择排序 public static void chooseSort(int[] array){ for (int i = 0; i < array.length; i++) { int minIndex=i;//记录最小值的下标 for (int j = i+1; j < array.length; j++) { if (array[j]<array[minIndex]) { minIndex=j; } } swap(array,i,minIndex); } }
2. ヒープ ソート
ヒープ ソートに関する 2 つのアイデア (例として昇順):
- 大きなルート ヒープを作成し、ヒープの末尾要素の位置キーを定義し、交換します。キーがヒープの先頭に到達するまで、ヒープの先頭の要素とキーの位置にある要素 (key --) が毎回実行されます。このとき、ヒープ内の要素の順次走査は昇順になります (次のように)以下)
- 時間計算量: O(N^2)
//向下调整 public static void shiftDown(int[] array,int parent,int len){ int child=parent*2+1; while(child<len){ if(child+1<len){ if(array[child+1]>array[child]){ child++; } } if(array[child]>array[parent]){ swap(array,child,parent); parent=child; child=parent*2+1; }else{ break; } } } //创建大根堆 private static void createHeap(int[] array){ for (int parent = (array.length-1-1)/2; parent >=0; parent--) { shiftDown(array,parent,array.length); } } //堆排序 public static void heapSort(int[] array){ //创建大根堆 createHeap(array); //排序 for (int i = array.length-1; i >0; i--) { swap(array,0,i); shiftDown(array,0,i); } }
3. Exchange sort
1 、バブルソート
public static void bubbleSort(int[] array){ for(int i=0;i<array.length-1;++i){ int count=0; for (int j = 0; j < array.length-1-i; j++) { if(array[j]>array[j+1]){ swap(array,j,j+1); count++; } } if(count==0){ break; } } }
2. クイック ソート
並べ替える要素のシーケンス内の任意の要素を基本値として取得し、並べ替えコードに従って並べ替えるセットを 2 つのサブシーケンスに分割します。左側のサブシーケンスのすべての要素が基本値より小さく、右側のサブシーケンスのすべての要素が基本値より大きい場合、すべての要素が対応する位置に配置されるまで、このプロセスが左右のサブシーケンスに対して繰り返されます。
public static void quickSort(int[] array,int left,int right){ if(left>=right){ return; } int l=left; int r=right; int tmp=array[l]; while(l<r){ while(array[r]>=tmp&&l<r){ //等号不能省略,如果省略,当序列中存在相同的值时,程序会死循环 r--; } array[l]=array[r]; while(array[l]<=tmp&&l<r){ l++; } array[r]=array[l]; } array[l]=tmp; quickSort(array,0,l-1); quickSort(array,l+1,right); }
//key值的优化,只在快速排序中使用,则可以为private private int threeMid(int[] array,int left,int right){ int mid=(left+right)/2; if(array[left]>array[right]){ if(array[mid]>array[left]){ return left; } return array[mid]<array[right]?right:mid; }else{ if(array[mid]<array[left]){ return left; } return array[mid]>array[right]?right:mid; } }
随着我们递归的进行,区间会变的越来越小,我们可以在区间小到一个值的时候,对其进行插入排序,这样代码的效率会提高很多。
(3)快速排序的非递归实现
//找到一次划分的下标 public static int patition(int[] array,int left,int right){ int tmp=array[left]; while(left<right){ while(left<right&&array[right]>=tmp){ right--; } array[left]=array[right]; while(left<right&&array[left]<=tmp){ left++; } array[right]=array[left]; } array[left]=tmp; return left; } //快速排序的非递归 public static void quickSort2(int[] array){ Stack<Integer> stack=new Stack<>(); int left=0; int right=array.length-1; stack.push(left); stack.push(right); while(!stack.isEmpty()){ int r=stack.pop(); int l=stack.pop(); int p=patition(array,l,r); if(p-1>l){ stack.push(l); stack.push(p-1); } if(p+1<r){ stack.push(p+1); stack.push(r); } } }
四、归并排序
归并排序(MERGE-SORT):该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。实现序列的完全有序,需要将已经有序的子序列合并,即先让每个子序列有序,然后再将相邻的子序列段有序。若将两个有序表合并成一个有序表,称为二路归并。
时间复杂度:O(n*logN)(无论有序还是无序)
空间复杂度:O(N)。是稳定的排序。
//归并排序:递归 public static void mergeSort(int[] array,int left,int right){ if(left>=right){ return; } int mid=(left+right)/2; //递归分割 mergeSort(array,left,mid); mergeSort(array,mid+1,right); //合并 merge(array,left,right,mid); } //非递归 public static void mergeSort1(int[] array){ int gap=1; while(gap<array.length){ for (int i = 0; i < array.length; i+=2*gap) { int left=i; int mid=left+gap-1; if(mid>=array.length){ mid=array.length-1; } int right=left+2*gap-1; if(right>=array.length){ right=array.length-1; } merge(array,left,right,mid); } gap=gap*2; } } //合并:合并两个有序数组 public static void merge(int[] array,int left,int right,int mid){ int[] tmp=new int[right-left+1]; int k=0; int s1=left; int e1=mid; int s2=mid+1; int e2=right; while(s1<=e1&&s2<=e2){ if(array[s1]<=array[s2]){ tmp[k++]=array[s1++]; }else{ tmp[k++]=array[s2++]; } } while(s1<=e1){ tmp[k++]=array[s1++]; } while(s2<=e2){ tmp[k++]=array[s2++]; } for (int i = left; i <= right; i++) { array[i]=tmp[i-left]; } }
五、排序算法的分析
排序方法 | 最好时间复杂度 | 最坏时间复杂度 | 空间复杂度 | 稳定性 |
直接插入排序 | O(n) | O(n^2) | O(1) | 稳定 |
希尔排序 | O(n) | O(n^2) | O(1) | 不稳定 |
直接排序 | O(n^2) | O(n^2) | O(1) | 不稳定 |
堆排序 | O(nlog(2)n) | O(nlog(2)n) | O(1) | 不稳定 |
冒泡排序 | O(n) | O(n^2) | O(1) | 稳定 |
快速排序 | O(nlog(2)n) | O(n^2) | O(nlog(2)n) | 不稳定 |
归并排序 | O(nlog(2)n) | O(nlog(2)n) | O(n) | 稳定 |
以上がJava データ構造の 7 つのソート方法の使用方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Java 8は、Stream APIを導入し、データ収集を処理する強力で表現力のある方法を提供します。ただし、ストリームを使用する際の一般的な質問は次のとおりです。 従来のループにより、早期の中断やリターンが可能になりますが、StreamのForeachメソッドはこの方法を直接サポートしていません。この記事では、理由を説明し、ストリーム処理システムに早期終了を実装するための代替方法を調査します。 さらに読み取り:JavaストリームAPIの改善 ストリームを理解してください Foreachメソッドは、ストリーム内の各要素で1つの操作を実行する端末操作です。その設計意図はです

PHPは、サーバー側で広く使用されているスクリプト言語で、特にWeb開発に適しています。 1.PHPは、HTMLを埋め込み、HTTP要求と応答を処理し、さまざまなデータベースをサポートできます。 2.PHPは、ダイナミックWebコンテンツ、プロセスフォームデータ、アクセスデータベースなどを生成するために使用され、強力なコミュニティサポートとオープンソースリソースを備えています。 3。PHPは解釈された言語であり、実行プロセスには語彙分析、文法分析、編集、実行が含まれます。 4.PHPは、ユーザー登録システムなどの高度なアプリケーションについてMySQLと組み合わせることができます。 5。PHPをデバッグするときは、error_reporting()やvar_dump()などの関数を使用できます。 6. PHPコードを最適化して、キャッシュメカニズムを使用し、データベースクエリを最適化し、組み込み関数を使用します。 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHPは、シンプルな構文と高い実行効率を備えたWeb開発に適しています。 2。Pythonは、簡潔な構文とリッチライブラリを備えたデータサイエンスと機械学習に適しています。

PHPは、特に迅速な開発や動的なコンテンツの処理に適していますが、データサイエンスとエンタープライズレベルのアプリケーションには良くありません。 Pythonと比較して、PHPはWeb開発においてより多くの利点がありますが、データサイエンスの分野ではPythonほど良くありません。 Javaと比較して、PHPはエンタープライズレベルのアプリケーションでより悪化しますが、Web開発により柔軟性があります。 JavaScriptと比較して、PHPはバックエンド開発により簡潔ですが、フロントエンド開発のJavaScriptほど良くありません。

PHPとPythonにはそれぞれ独自の利点があり、さまざまなシナリオに適しています。 1.PHPはWeb開発に適しており、組み込みのWebサーバーとRich Functionライブラリを提供します。 2。Pythonは、簡潔な構文と強力な標準ライブラリを備えたデータサイエンスと機械学習に適しています。選択するときは、プロジェクトの要件に基づいて決定する必要があります。

カプセルは3次元の幾何学的図形で、両端にシリンダーと半球で構成されています。カプセルの体積は、シリンダーの体積と両端に半球の体積を追加することで計算できます。このチュートリアルでは、さまざまな方法を使用して、Javaの特定のカプセルの体積を計算する方法について説明します。 カプセルボリュームフォーミュラ カプセルボリュームの式は次のとおりです。 カプセル体積=円筒形の体積2つの半球体積 で、 R:半球の半径。 H:シリンダーの高さ(半球を除く)。 例1 入力 RADIUS = 5ユニット 高さ= 10単位 出力 ボリューム= 1570.8立方ユニット 説明する 式を使用してボリュームを計算します。 ボリューム=π×R2×H(4

phphassiblasifly-impactedwebdevevermentandsbeyondit.1)itpowersmajorplatformslikewordpratsandexcelsindatabase interactions.2)php'sadaptableability allowsitale forlargeapplicationsusingframeworkslikelavel.3)

PHPが多くのWebサイトよりも優先テクノロジースタックである理由には、その使いやすさ、強力なコミュニティサポート、広範な使用が含まれます。 1)初心者に適した学習と使用が簡単です。 2)巨大な開発者コミュニティと豊富なリソースを持っています。 3)WordPress、Drupal、その他のプラットフォームで広く使用されています。 4)Webサーバーとしっかりと統合して、開発の展開を簡素化します。
