ホームページ バックエンド開発 Python チュートリアル Python の EM アルゴリズムとは何ですか?

Python の EM アルゴリズムとは何ですか?

Jun 05, 2023 am 08:51 AM
python 統計 emアルゴリズム

Python の EM アルゴリズムは、最尤推定に基づく反復手法であり、教師なし学習のパラメーター推定問題によく使用されます。この記事では、EM アルゴリズムの定義、基本原理、アプリケーション シナリオ、Python 実装について紹介します。

1. EM アルゴリズムの定義

EM アルゴリズムは、Expectation-maximization Algorithm の略称です。これは、観察されたデータに基づいて最尤推定を解くように設計された反復アルゴリズムです。

EM アルゴリズムでは、サンプル データが特定の確率分布に由来すると仮定する必要があり、分布のパラメーターは不明であり、EM アルゴリズムを通じて推定する必要があります。 EM アルゴリズムは、未知のパラメーターが 2 つのカテゴリ (1 つは観測可能な変数、もう 1 つは観測不可能な変数) に分類できると想定しています。反復を通じて、観測不可能な変数の期待値がパラメータの推定値として使用され、収束するまで解が再度解かれます。

2. EM アルゴリズムの基本原理

  1. E ステップ (期待)

E ステップでは、電流に基づいて計算する必要があります。パラメータ推定 隠れ変数の確率分布を見つけること、つまり、隠れ変数の期待値である各隠れ変数の条件付き分布を見つけることです。この期待値は、現在のパラメータ推定値に基づいて計算されます。

  1. M ステップ (最大化)

M ステップでは、計算された潜在変数の期待値に基づいて現在のパラメータ値を再推定する必要がありますEステップで。この推定値は、ステップ E で計算された潜在変数の期待値に基づいて計算されます。

  1. パラメータ値の更新

E ステップと M ステップの繰り返しにより、最終的に一連のパラメータ推定値が取得されます。推定値が収束するとアルゴリズムは終了し、そうでない場合は反復が続行されます。最適なパラメーター推定値が見つかるまで、反復ごとにパラメーター値が最適化されます。

3. EM アルゴリズムの適用シナリオ

EM アルゴリズムは、クラスター分析、モデル選択、隠れマルコフ モデルなどの教師なし学習の分野で広く使用されており、強い堅牢性を備えています。高い柔軟性と反復効率という利点があります。

たとえば、クラスタリング問題では、EM アルゴリズムを混合ガウス モデルのパラメータ推定に使用できます。つまり、観察されたデータ分布は複数のガウス分布の混合モデルとしてモデル化され、サンプルはグループ化されます。各グループ内のデータが同じ確率分布に従うようにします。 EM アルゴリズムでは、E ステップでデータをグループ化し、M ステップでガウス分布のパラメータを更新することで問題を解決します。

さらに、画像処理では、画像のセグメンテーションや画像のノイズ除去などのタスクで EM アルゴリズムがよく使用されます。

4. Python での EM アルゴリズムの実装

Python には、SciPy ライブラリの EM アルゴリズム実装や、 scikit-learn ライブラリ、混合モデル GMM、TensorFlow ライブラリの変分オートエンコーダ VAE など。

以下は、SciPy ライブラリの EM アルゴリズム実装を例に説明します。まず、次のようにこれを Pyhton にインポートする必要があります:

import scipy.stats as st
import numpy as np
ログイン後にコピー

次に、混合ガウス モデルの確率密度関数を EM アルゴリズムの最適化目的関数として定義します:

def gmm_pdf(data, weights, means, covs):
    n_samples, n_features = data.shape
    pdf = np.zeros((n_samples,))
    for i in range(len(weights)):
        pdf += weights[i]*st.multivariate_normal.pdf(data, mean=means[i], cov=covs[i])
    return pdf
ログイン後にコピー

次に、 EM アルゴリズムの関数を定義します:

def EM(data, n_components, max_iter):
    n_samples, n_features = data.shape
    weights = np.ones((n_components,))/n_components
    means = data[np.random.choice(n_samples, n_components, replace=False)]
    covs = [np.eye(n_features) for _ in range(n_components)]

    for i in range(max_iter):
        # E步骤
        probabilities = np.zeros((n_samples, n_components))
        for j in range(n_components):
            probabilities[:,j] = weights[j]*st.multivariate_normal.pdf(data, mean=means[j], cov=covs[j])
        probabilities = (probabilities.T/probabilities.sum(axis=1)).T

        # M步骤
        weights = probabilities.mean(axis=0)
        means = np.dot(probabilities.T, data)/probabilities.sum(axis=0)[:,np.newaxis]
        for j in range(n_components):
            diff = data - means[j]
            covs[j] = np.dot(probabilities[:,j]*diff.T, diff)/probabilities[:,j].sum()

    return weights, means, covs
ログイン後にコピー

最後に、次のコードを使用して EM アルゴリズムをテストできます:

# 生成数据
np.random.seed(1234)
n_samples = 100
x1 = np.random.multivariate_normal([0,0], [[1,0],[0,1]], int(n_samples/2))
x2 = np.random.multivariate_normal([3,5], [[1,0],[0,2]], int(n_samples/2))
data = np.vstack((x1,x2))

# 运行EM算法
weights, means, covs = EM(data, 2, 100)

# 输出结果
print('weights:', weights)
print('means:', means)
print('covs:', covs)
ログイン後にコピー

参考文献:

[1] Xu, R . & Wunsch, D. C. (2005). クラスタリング アルゴリズムの調査. IEEE Transactions on Neural Networks, 16(3), 645-678.

[2] Blei, D.M.、Ng, A.Y.、Jordan, M. I. (2003). 潜在ディリクレ割り当て. Journal of Machine Learning Research, 3(4-5), 993-1022.

以上がPython の EM アルゴリズムとは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:さまざまなパラダイムが説明されています PHPおよびPython:さまざまなパラダイムが説明されています Apr 18, 2025 am 12:26 AM

PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPとPythonの選択:ガイド PHPとPythonの選択:ガイド Apr 18, 2025 am 12:24 AM

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Python vs. JavaScript:学習曲線と使いやすさ Python vs. JavaScript:学習曲線と使いやすさ Apr 16, 2025 am 12:12 AM

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PHPとPython:彼らの歴史を深く掘り下げます PHPとPython:彼らの歴史を深く掘り下げます Apr 18, 2025 am 12:25 AM

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

メモ帳でPythonを実行する方法 メモ帳でPythonを実行する方法 Apr 16, 2025 pm 07:33 PM

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

See all articles