OlaGPT、人間の認知をシミュレートする初の思考フレームワーク: 6 つのモジュールが言語モデルを強化し、推論能力を最大 85% 向上させます
ChatGPT が最初にリリースされたとき、私たちにあまりにも大きな衝撃を与えました。対話におけるモデルのパフォーマンスがあまりにも人間的で、言語モデルに「思考能力」があるかのような錯覚を引き起こしました。
しかし、研究者たちは、言語モデルを深く理解した後、確率の高い言語パターンに基づく再現は、期待される「一般的な人工知能」からはまだ遠いことに徐々に気づいてきました。
現在の研究のほとんどでは、大規模な言語モデルは主に、人間の認知フレームワークを考慮せずに、推論タスクを実行するための特定のプロンプトのガイダンスの下で思考連鎖を生成するため、言語モデルは複雑な推論問題を解決できません。人間とのギャップはまだまだ大きい。
人間は複雑な推論の問題に直面するとき、通常、さまざまな認知能力を使用し、ツール、知識、外部環境情報のあらゆる側面と対話する必要があります。言語モデルは人間の思考をシミュレートできますか?複雑な問題を解決するプロセスについてはどうですか? ?
答えはもちろんイエスです!人間の認知処理フレームワークをシミュレートする最初のモデル OlaGPT が登場しました。
ペーパーリンク: https://arxiv.org/abs/2305.16334
コードリンク: https://www.php.cn/link/ 73a1c863a54653d5e184b790fee14754
OlaGPT には、注意、記憶、推論、学習、対応するスケジューリングおよび意思決定メカニズムを含む複数の認知モジュールが含まれています。人間の能動学習からインスピレーションを得たこのフレームワークには、以前のエラーとエキスパートを記録する学習ユニットも含まれています。意見、および同様の問題を解決する能力を向上させるための動的な参照。
この記事では、人間が問題を解決するための一般的で効果的な推論フレームワークについても概説し、それに応じて思考連鎖 (CoT) テンプレートを設計し、包括的な意思決定も提案しています。モデルの精度を最大限に高める仕組みを作ります。
複数の推論データセットに対する厳密な評価の後に得られた実験結果は、OlaGPT が以前の最先端のベンチマークを上回り、その有効性を証明していることを示しています。
人間の認知のシミュレーション
現在の言語モデルと期待される一般的な人工知能の間には、まだ大きなギャップがあります。主な症状は次のとおりです:
1. 場合によっては、生成されたコンテンツは無意味であるか、人間の価値観の好みから逸脱しているか、または非常に危険な示唆を与えることさえあります。現在の解決策は、モデルの出力を分類するためにヒューマン フィードバックを使用した強化学習 (RLHF) を導入することです。
2. 言語モデルの知識は、トレーニング データで明示的に言及されている概念と事実に限定されます。
複雑な問題に直面したとき、言語モデルは変化する環境に適応したり、既存の知識やツールを使用したり、歴史的教訓を反映したり、問題を分解したり、人間と同じように長期的な進化の中で人間によって要約された知識を使用したりすることができません。問題を解決するための思考パターン (類推、帰納的推論、演繹的推論など)。
しかし、言語モデルが人間の脳の処理問題のプロセスをシミュレートできるようにするには、まだ多くのシステム上の問題があります:
1. 人間の認知フレームワークの主要モジュールを体系的に模倣してエンコードする方法人間の一般的な推論パターンに従ってスケジュールを設定する方法で実装できるようにしながら?
2. 人間のように積極的に学習するように、つまり歴史的な間違いや困難な問題に対する専門家による解決策から学習して発展させるように言語モデルを導くにはどうすればよいでしょうか?
モデルを再トレーニングして修正された回答をエンコードすることは可能かもしれませんが、明らかにコストがかかり、柔軟性に欠けます。
3. 人間が進化させたさまざまな思考モードを柔軟に利用して推論性能を向上させる言語モデルを作成するにはどうすればよいでしょうか?
固定された普遍的な思考モデルは、さまざまな問題に適応することが困難です。人間がさまざまな種類の問題に直面するときと同じように、通常、人間は類推論や演繹的推論など、さまざまな思考方法を柔軟に選択します。
OlaGPT
OlaGPT は、人間の思考をシミュレートし、大規模な言語モデルの機能を強化できる問題解決フレームワークです。
OlaGPT は、認知アーキテクチャ理論を利用し、注意、記憶、学習、推論、アクション、アクション選択などの認知フレームワークの中核機能をモデル化します。
研究者らは、特定の実装のニーズに応じてフレームワークを微調整し、複雑な問題を解決するための言語モデルに適したプロセスを提案しました。これには、具体的には、意図強化モジュール (注意)、記憶モジュール (メモリ) の 6 つのモジュールが含まれます。 )、アクティブラーニングモジュール(学習)、推論モジュール(推論)、コントローラーモジュール(アクション選択)、および投票モジュール。
意図の強化
注意は人間の認知の重要な部分であり、関連する情報を識別し、無関係なデータを除外します。
同様に、研究者らは、言語モデルに対応する注意モジュール、つまりインテント強化を設計しました。これは、最も関連性の高い情報を抽出し、ユーザー入力とモデルの言語パターンの間のより強い相関関係を確立することを目的としています。ユーザーの表現習慣からモデルの表現習慣への最適化されたコンバーターとして。
まず、具体的なプロンプトワードを通じて LLM の質問タイプを事前に取得し、質問の方法を再構築します。
たとえば、分析を容易にするために、質問の冒頭に「それでは、XX (質問の種類)、質問、選択肢を教えてください:」という文を追加します。また、「答えは JSON 形式で終わる必要があります: 答え: オプション [A、B、C、D、E] のいずれか。」
#Memory(メモリ)
メモリ モジュールは、さまざまな知識ベース情報を保存する上で重要な役割を果たします。研究により、最新の事実データを理解する際の現在の言語モデルの限界が証明されており、メモリ モジュールは、内部化されていない知識を統合することに重点を置いていますモデルごとに取得し、長期記憶として外部ライブラリに保存します。
研究者らは、短期記憶には langchain の記憶機能を使用し、次に Faiss ベースのベクトル データベースを使用して長期記憶を実現しました。
クエリ プロセス中に、その検索機能はライブラリから関連する知識を抽出できます。これは、事実、ツール、メモ、思考という 4 つのタイプのメモリ ライブラリをカバーします。事実とは、常識、常識などの実世界の情報です。など; ツールには検索エンジン、計算機、Wikipedia が含まれており、言語モデルが編集を必要としない作業を完了するのに役立ちます; メモは主にいくつかの困難なケースと問題を解決するためのステップを記録します; 思考ライブラリには主に人間が書いた問題解決法が保存されています専門家 思考テンプレート。専門家は人間またはモデルになります。
学習
人間にとって学習能力は、自己パフォーマンスを継続的に向上させるために非常に重要です。本質的に、あらゆる形式の学習は経験に依存しており、言語モデルは以前の学習から学ぶことができます。間違いを克服して推論能力をすぐに向上させます。
まず、研究者は言語モデルでは解決できない問題を特定し、次に専門家によって提供された洞察と説明をノート ライブラリに記録し、最後に言語を促進するために関連するノートを選択します。モデル学習により、同様の問題をより効果的に処理できるようになります。
推論
推論モジュールの目的は、人間の推論プロセスに基づいて複数のエージェントを作成し、それによって言語モデルの潜在的な思考能力を刺激し、推論の問題を解決することです。
このモジュールでは、水平思考、逐次的思考、批判的思考、統合的思考などの特定の思考タイプを参照して複数の思考テンプレートを組み合わせて、推論タスクを促進します。
コントローラー
コントローラー モジュールは主に、モデルの内部計画タスク (実行する特定のモジュールの選択など) やファクトとツールの処理など、関連するアクションの選択を処理するために使用されます。 、メモ、思考バンクから選択します。
関連するライブラリが最初に取得されて照合されます。取得されたコンテンツは次にテンプレート エージェントに統合され、言語モデルがテンプレートに基づいて非同期で応答を提供する必要があります。人間が推論の開始時にすべての関連情報を特定するのが難しいのと同様に、言語モデルが最初からこれを行うことを期待することも同様に困難です。
そこで、上記 4 つのライブラリに対して、各ライブラリの検索戦略が若干異なる埋め込みインデックスを作成する Faiss 法を用いて、ユーザの質問と途中の推論の進行に基づいて動的検索を実装します。
投票
異なるタイプの問題には、異なる思考テンプレートがより適している可能性があるため、研究者は、複数の思考テンプレート間の統合調整機能を向上させ、より多くの投票戦略を作成できるように投票モジュールを設計しました。パフォーマンスを向上させるために最適な答えを生成します。
具体的な投票方法は次のとおりです:
1. 言語モデルの投票: 言語モデルをガイドして、指定された複数の選択肢の中から最も一貫した回答を選択し、その理由を説明します。
2. 正規表現投票: 正規表現の完全一致を使用して回答を抽出し、投票結果を取得します。
実験結果
推論タスクにおける強化された言語モデル フレームワークの有効性を評価するために、研究者らは 2 種類の推論データ セットに対して包括的な実験比較を実施しました。
結果からわかります:
1. SC (自己一貫性) は GPT-3.5-turbo よりも優れたパフォーマンスを示し、統合がある程度の方法は、大規模モデルの有効性を向上させるのに非常に役立ちます。
2. 本記事で提案する手法の性能はSCを超えており、思考テンプレート戦略の有効性がある程度証明されています。
さまざまな思考テンプレートに対する回答には大きな違いがあり、さまざまな思考テンプレートに基づいて投票すると、単純に複数ラウンドの投票を行うよりも最終的にはより良い結果が得られます。
3. 思考テンプレートが異なれば効果も異なり、推論問題には段階的な解決策の方が適している場合があります。
4. アクティブ ラーニング モジュールのパフォーマンスは、ゼロサンプル法よりも大幅に優れています。
ノート ライブラリの一部として困難なケースを含め、ランダム、検索、および組み合わせリストを使用すると、パフォーマンスを向上させることができ、これは実現可能な戦略です。
5. 異なる取得スキームは異なるデータセットに異なる影響を及ぼします。一般に、組み合わせ戦略の方が良い結果が得られます。
6. この記事の方法は他のソリューションより明らかに優れています。これは、アクティブ ラーニング モジュールの効果的な設計を含むフレームワーク全体の合理的な設計によるものです。思考テンプレートは、さまざまなソリューションへの適応を実現します。モデルがあり、異なる思考テンプレートの下での結果は異なります。コントローラーモジュールは非常に優れた制御の役割を果たし、必要なコンテンツに一致するコンテンツを選択します。投票モジュールによって設計された異なる思考テンプレートの統合方法は効果的です。
参考資料:
https://www.php.cn/link/73a1c863a54653d5e184b790fee14754
以上がOlaGPT、人間の認知をシミュレートする初の思考フレームワーク: 6 つのモジュールが言語モデルを強化し、推論能力を最大 85% 向上させますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ
