大規模な言語モデルに包括的なオーディオビジュアル機能を追加し、DAMO アカデミーがソース Video-LLaMA をオープンします
今日のソーシャル メディアやインターネット文化においてビデオの役割はますます重要になっており、Douyin、Kuaishou、Bilibili などは数億人のユーザーに人気のプラットフォームとなっています。ユーザーは、自分の人生の瞬間、創造的な作品、興味深い瞬間、その他のビデオを中心としたコンテンツを共有して、他のユーザーと対話し、コミュニケーションを図ります。
最近、大規模な言語モデルが優れた機能を実証しています。大型モデルに「目」と「耳」を持たせて、動画を理解してユーザーと対話できるようにすることはできないだろうか。
この問題から出発して、DAMO アカデミーの研究者は、包括的なオーディオビジュアル機能を備えた大規模モデルである Video-LLaMA を提案しました。 Video-LLaMA は、ビデオ内のビデオおよびオーディオ信号を認識して理解することができ、オーディオ/ビデオの説明、書き込み、質疑応答など、オーディオとビデオに基づく一連の複雑なタスクを完了するためのユーザー入力指示を理解できます。現在、論文、コード、インタラクティブなデモはすべて公開されています。さらに、研究チームは、Video-LLaMA プロジェクトのホームページで、中国のユーザーのエクスペリエンスをよりスムーズにするために、モデルの中国語版も提供しています。
- 論文リンク: https://arxiv.org/abs/2306.02858
- コードアドレス: https://github.com/DAMO-NLP-SG/Video-LLaMA
- #デモ アドレス: ##モデルスコープ: https://modelscope.cn/studios /damo /video-llama/summary
- Huggingface: https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA
- サンプル入力ファイルのアドレス:
- https://www.php.cn/link /0fbce6c74ff376d18cb352e7fdc6273bモデル設計
Video-LLaMA は、ビジュアルとオーディオのモダリティ情報を組み合わせるモジュラー設計原則を採用しており、情報は大規模な言語モデルの入力空間を利用して、クロスモーダル命令に従う機能を実現します。静的な画像の理解に焦点を当てた以前の大規模モデル研究 (MiNIGPT4、LLaVA) とは異なり、Video-LLaMA はビデオの理解において 2 つの課題に直面しています。それは、視覚における動的なシーンの変化を捉えることと、視聴覚信号を統合することです。
ビデオの動的なシーンの変化をキャプチャするために、Video-LLaMA にはプラグイン可能なビジュアル言語ブランチが導入されています。このブランチでは、まず BLIP-2 の事前トレーニング済み画像エンコーダーを使用して画像の各フレームの個々の特徴を取得し、それを対応するフレーム位置の埋め込みと組み合わせます。すべての画像特徴は Video Q-Former と Video Q に送信されます。 -前者はフレームレベルの画像表現を集約し、固定長の合成ビデオ表現を生成します。最後に、線形レイヤーを使用して、ビデオ表現を大規模言語モデルの埋め込み空間に位置合わせします。
トレーニング コストを削減するために、Video-LLaMA は事前トレーニングされた画像/音声エンコーダーをフリーズし、ビジュアル ブランチとオーディオ ブランチの次のパラメーターのみを更新します: Video/Audio Q-Former 、位置コーディング層および線形層 (図 1 を参照)。
ビジョンとテキストの位置関係を学習するために、著者らはまず大規模なビデオテキストデータセット(WebVid-2M)と画像テキストデータセット(CC-595K)を使用してビジョンブランチを事前トレーニングしました。 )。その後、著者らは、MiniGPT-4、LLaVA の画像コマンド データ セットと、Video-Chat のビデオ コマンド データ セットを使用して微調整を行い、より優れたクロスモーダル コマンド追従機能を実現しました。
音声テキストの配置関係の学習に関しては、大規模で高品質な音声テキスト データが不足しているため、著者らはこの目標を達成するために回避策を採用しました。まず、オーディオ言語ブランチの学習可能なパラメーターの目標は、オーディオ エンコーダーの出力を LLM の埋め込み空間に合わせることで理解できます。オーディオ エンコーダ ImageBind には、非常に強力なマルチモーダル アライメント機能があり、さまざまなモダリティのエンベディングを共通の空間にアライメントできます。したがって、著者らはビジュアルテキストデータを使用してオーディオ言語ブランチをトレーニングし、ImageBind の共通埋め込み空間を LLM のテキスト埋め込み空間に位置合わせし、それによって音声モダリティと LLM テキスト埋め込み空間の位置合わせを実現します。この賢い方法により、Video-LLaMA は、音声データでトレーニングされていない場合でも、推論中に音声を理解する能力を実証できます。
表示例
著者は、Video-LLaMA のビデオ/オーディオ/画像ベースの対話の例をいくつか示します。
(1) 次の 2 つの例は、Video-LLaMA の包括的な視聴覚認識機能を示しています。例内の会話はオーディオ ビデオを中心に展開されます。例 2 では、画面には出演者のみが表示されますが、音は観客の歓声や拍手であり、モデルが視覚信号しか受信できない場合、観客の肯定的な反応を推測することはできません。オーディオには楽器の音はありませんが、写真にはサックスが映っていますが、聴覚信号しか受信できないモデルでは、プレーヤーがサックスを演奏したことはわかりません。
(2) Video-LLaMA は静止画像に対する強力な知覚理解能力も備えており、画像の説明、質問、および質問を完了することができます。回答 タスクを待ちます。
概要
現時点では、オーディオとビデオの理解は依然として非常に複雑であり、成熟したソリューションはありません。 Video-LLaMA は優れた機能を示していますが、著者らは、それにはいくつかの制限があるとも述べています。
(1) 限られた知覚能力: Video-LLaMA の視覚および聴覚能力はまだ比較的初歩的であり、複雑な視覚情報と音声情報を識別することは依然として困難です。理由の 1 つは、データ セットの品質とサイズが十分ではないことです。この研究グループは、モデルの知覚能力を向上させるために、高品質のオーディオ、ビデオ、テキストの配置データセットを構築することに熱心に取り組んでいます。
(2) 長いビデオの処理が難しい: 長いビデオ (映画やテレビ番組など) には大量の情報が含まれているため、モデルに高い推論能力とコンピューティング リソースが必要です。
(3) 言語モデルに固有の幻覚問題は、Video-LLaMA にも依然として存在します。
一般に、Video-LLaMA は、包括的なオーディオビジュアル機能を備えた大規模なモデルとして、オーディオとビデオの理解の分野で目覚ましい成果を達成しました。研究者が熱心に取り組み続けるにつれて、上記の課題は 1 つずつ克服され、オーディオとビデオの理解モデルが広範な実用的価値を持つようになるでしょう。
以上が大規模な言語モデルに包括的なオーディオビジュアル機能を追加し、DAMO アカデミーがソース Video-LLaMA をオープンしますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ
