Python での PCA 主成分分析 (次元削減) 手法
Python における PCA 主成分分析 (次元削減) スキル
PCA (主成分分析) 主成分分析は、非常に一般的に使用されるデータの次元削減テクノロジです。 PCA アルゴリズムを使用すると、データを処理してデータ固有の特性を発見し、その後のデータ分析とモデリングのためのより正確かつ効果的なデータ収集を提供できます。
以下では、Python で PCA 主成分分析を使用するためのテクニックをいくつか紹介します。
- データを正規化する方法
PCA 次元削減分析を実行する前に、まずデータを正規化する必要があります。これは、PCA アルゴリズムが単に要素値のサイズではなく、分散の最大化を通じて主成分を計算するため、各要素の対応する分散の影響が完全に考慮されるためです。
Python にはデータ正規化のためのメソッドが多数あります。最も基本的な方法は、sklearn ライブラリの StandardScaler クラスを使用して、データを平均 0、分散 1 の標準正規分布に標準化することです。コードは次のとおりです。正規化されたデータを取得できます。処理されたデータのコレクション data_std。
PCA を使用した次元削減- PCA を使用してデータの次元を削減するコードは非常に簡単です。 PCA モジュールは sklearn ライブラリに統合されており、PCA クラスを呼び出すときに次元削減後に保持される主成分の数を設定するだけで済みます。たとえば、次のコードはデータを 2 つの主成分に削減します。
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() data_std = scaler.fit_transform(data)
このうち、data_pca は PCA 次元削減処理後の新しいデータを返します。
次元削減後の主成分の数を選択する方法- 実際にデータの次元削減に PCA を使用する場合、達成するために適切な主成分の数を選択する必要があります。最高の次元削減効果。通常は、累積分散寄与率グラフをプロットすることで判断できます。
累積分散寄与率は、合計分散に対する最初の n 個の主成分の分散の合計のパーセンテージを表します。例:
from sklearn.decomposition import PCA pca = PCA(n_components=2) data_pca = pca.fit_transform(data_std)
累積分散寄与率グラフを描画すると、主成分の数を 1 から徐々に増加させたときの累積分散寄与率の変化傾向を観察して、適切な主成分の数を推定できます。コードは次のとおりです。
import numpy as np pca = PCA() pca.fit(data_std) cum_var_exp = np.cumsum(pca.explained_variance_ratio_)
図の赤い線は累積分散寄与率を表し、x 軸は主成分の数を表し、y 軸は説明された分散の割合を表します。最初の 2 つの主成分の分散寄与率は 1 に近いため、2 つの主成分を選択することでほとんどの分析タスクのニーズを満たすことができることがわかります。
PCA 次元削減後のデータを視覚化する方法- 最後に、matplotlib ライブラリの散布関数を使用して、PCA 次元削減後のデータを視覚化できます。たとえば、次のコードは、PCA によって元の 4 次元のデータを 2 次元に削減し、それを視覚的に表示します。
import matplotlib.pyplot as plt plt.bar(range(1, 6), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 6), cum_var_exp, where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show()
図内の色とラベルは、それぞれ元のデータの数値ラベルに対応します。視覚化を通じて データの次元を削減することで、データの構造と特性をより深く理解できるようになります。
つまり、PCA 主成分分析テクノロジを使用すると、データの次元を削減できるため、データの構造と特性をより深く理解できるようになります。 Python の sklearn ライブラリと matplotlib ライブラリを使用すると、PCA アルゴリズムを非常に簡単に実装して視覚化できます。
以上がPython での PCA 主成分分析 (次元削減) 手法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
