ディープラーニング開発に Go 言語を使用するにはどうすればよいですか?
近年、人工知能分野の急速な発展に伴い、ディープラーニングは非常に注目と応用価値が高い技術の一つとなっています。ただし、ディープラーニングの開発には通常、強力なコンピューティング能力と複雑なアルゴリズムの実装が必要であり、開発者にとっては大きな課題となります。幸いなことに、Go 言語は、高速で効率的でコンパイル可能で実行可能なプログラミング言語として、開発者がよりシンプルで効率的なディープ ラーニング開発を実行できるようにするいくつかの強力なライブラリとツールを提供します。この記事ではディープラーニング開発にGo言語を使用する方法を紹介します。
ディープ ラーニングの概要
ディープ ラーニングは、より複雑な問題を解決するための大規模なニューラル ネットワークの構築に焦点を当てた機械学習分野のサブセットです。分類、回帰、クラスタリングなどのタスクを実行できるだけでなく、データ内の特徴やパターンを自動的に抽出することもできます。ディープラーニングには、画像処理、自然言語処理、音声認識、データマイニングなど、幅広い用途があります。
Go 言語でのディープ ラーニング
現代のコンピューター システム用の言語として、Go 言語のシステム プログラミングのアイデアと効率的なパフォーマンスは、ディープ ラーニングの実装に多くの利点をもたらします。 Go 言語は、高い同時実行性、優れたスケーラビリティ、簡潔さ、読みやすさなどをサポートしているため、ディープラーニング開発において大きな可能性を秘めています。
Go 言語のディープ ラーニングは、主にディープ ラーニング ライブラリを使用して実装されます。ここでは、一般的な深層学習ライブラリをいくつか紹介します。
- Gorgonia
Gorgonia は Go 言語に基づく深層学習フレームワークで、ニューラル ネットワークの構築とトレーニングに役立ちます。 Gorgonia の核心は、シンボリックな計算グラフです。これは、計算グラフで変数、テンソル、演算を定義し、自動微分を使用して勾配を計算できることを意味します。 Gorgonia は、畳み込みニューラル ネットワーク、リカレント ニューラル ネットワーク、敵対的生成ネットワークなど、多くの便利な機能も提供します。
以下は、MNIST データセット上で完全に接続されたニューラル ネットワークを構築、トレーニング、テストするための簡単なサンプル プログラムです。
package main import ( "fmt" "log" "github.com/gonum/matrix/mat64" "gorgonia.org/gorgonia" "gorgonia.org/tensor" ) func main() { // 1. Load data data, labels, err := loadData() if err != nil { log.Fatal(err) } // 2. Create neural network g := gorgonia.NewGraph() x := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(data), len(data[0])), gorgonia.WithName("x")) y := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(labels), 1), gorgonia.WithName("y")) w := gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(data[0]), 10), gorgonia.WithName("w")) b := gorgonia.NewVector(g, tensor.Float64, gorgonia.WithShape(10), gorgonia.WithName("b")) pred := gorgonia.Must(gorgonia.Mul(x, w)) pred = gorgonia.Must(gorgonia.Add(pred, b)) loss := gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.SoftMax(pred)), gorgonia.Must(gorgonia.ArgMax(y, 1)))) if _, err := gorgonia.Grad(loss, w, b); err != nil { log.Fatal(err) } // 3. Train neural network machine := gorgonia.NewTapeMachine(g) solver := gorgonia.NewAdamSolver() for i := 0; i < 100; i++ { if err := machine.RunAll(); err != nil { log.Fatal(err) } if err := solver.Step(gorgonia.Nodes{w, b}, gorgonia.Nodes{loss}); err != nil { log.Fatal(err) } machine.Reset() } // 4. Test neural network test, testLabels, err := loadTest() if err != nil { log.Fatal(err) } testPred := gorgonia.Must(gorgonia.Mul(gorgonia.NewMatrix(g, tensor.Float64, gorgonia.WithShape(len(test), len(test[0])), test, gorgonia.WithName("test")), w)) testPred = gorgonia.Must(gorgonia.Add(testPred, b)) testLoss, err := gorgonia.SoftMax(gorgonia.Must(gorgonia.Mul(gorgonia.OnesLike(testPred), testPred)), 1) if err != nil { log.Fatal(err) } fmt.Println("Accuracy:", accuracy(testPred.Value().Data().([]float64), testLabels)) } func accuracy(preds mat64.Matrix, labels []float64) float64 { correct := 0 for i := 0; i < preds.Rows(); i++ { if preds.At(i, int(labels[i])) == mat64.Max(preds.RowView(i)) { correct++ } } return float64(correct) / float64(preds.Rows()) } func loadData() (data *mat64.Dense, labels *mat64.Dense, err error) { // ... } func loadTest() (test *mat64.Dense, labels []float64, err error) { // ... }
- Golearn
Golearn は、Go 言語で書かれた機械学習ライブラリです。このライブラリには、デシジョン ツリー、サポート ベクター マシン、K などの多くの古典的な機械学習アルゴリズムが含まれています。 -最近傍アルゴリズム。 Golearn には、従来の機械学習アルゴリズムに加えて、ニューロン、畳み込みニューラル ネットワーク、リカレント ニューラル ネットワークなどのいくつかの深層学習アルゴリズムも含まれています。
以下は、XOR データセット上で多層パーセプトロンを構築、トレーニング、テストするためのサンプル プログラムです。
package main import ( "fmt" "github.com/sjwhitworth/golearn/base" "github.com/sjwhitworth/golearn/linear_models" "github.com/sjwhitworth/golearn/neural" ) func main() { // 1. Load data data, err := base.ParseCSVToInstances("xor.csv", false) if err != nil { panic(err) } // 2. Create neural network net := neural.NewMultiLayerPerceptron([]int{2, 2, 1}, []string{"relu", "sigmoid"}) net.Initialize() // 3. Train neural network trainer := neural.NewBackpropTrainer(net, 0.1, 0.5) for i := 0; i < 5000; i++ { trainer.Train(data) } // 4. Test neural network meta := base.NewLazilyFilteredInstances(data, func(r base.FixedDataGridRow) bool { return r.RowString(0) != "0" && r.RowString(1) != "0" }) preds, err := net.Predict(meta) if err != nil { panic(err) } fmt.Println(preds) }
- Gorgonia/XGBoost
XGBoost は、分類、回帰、ランキングなどのさまざまな機械学習タスクに使用できるよく知られた勾配ブースティング ライブラリです。 Go 言語では、XGBoost の Go 言語インターフェイスとして Gorgonia/XGBoost を使用できます。このライブラリは、XGBoost を使用したディープラーニング開発を容易にするいくつかの機能を提供します。
以下は、XOR データセット上で XGBoost 分類器を構築、トレーニング、テストするためのサンプル プログラムです。
package main import ( "fmt" "gorgonia.org/xgboost" ) func main() { // 1. Load data train, err := xgboost.ReadCSVFile("xor.csv") if err != nil { panic(err) } // 2. Create XGBoost classifier param := xgboost.NewClassificationParams() param.MaxDepth = 2 model, err := xgboost.Train(train, param) if err != nil { panic(err) } // 3. Test XGBoost classifier test, err := xgboost.ReadCSVFile("xor.csv") if err != nil { panic(err) } preds, err := model.Predict(test) if err != nil { panic(err) } fmt.Println(preds) }
結論
この記事では、ディープ ラーニング開発に Go 言語を使用する方法と、いくつかの一般的なディープ ラーニング ライブラリを紹介します。 Go 言語は、高速かつ効率的でコンパイル可能かつ実行可能なプログラミング言語として、ディープ ラーニング開発において大きな利点を示しています。深層学習向けに開発する効率的な方法を探している場合は、Go を試してみる価値があります。
以上がディープラーニング開発に Go 言語を使用するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

エディター | Radish Skin 2021 年の強力な AlphaFold2 のリリース以来、科学者はタンパク質構造予測モデルを使用して、細胞内のさまざまなタンパク質構造をマッピングし、薬剤を発見し、既知のあらゆるタンパク質相互作用の「宇宙地図」を描いてきました。ちょうど今、Google DeepMind が AlphaFold3 モデルをリリースしました。このモデルは、タンパク質、核酸、小分子、イオン、修飾残基を含む複合体の結合構造予測を実行できます。 AlphaFold3 の精度は、これまでの多くの専用ツール (タンパク質-リガンド相互作用、タンパク質-核酸相互作用、抗体-抗原予測) と比較して大幅に向上しました。これは、単一の統合された深層学習フレームワーク内で、次のことを達成できることを示しています。

Go では、正規表現を使用してタイムスタンプを照合できます。ISO8601 タイムスタンプの照合に使用されるような正規表現文字列をコンパイルします。 ^\d{4}-\d{2}-\d{2}T \d{ 2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ 。 regexp.MatchString 関数を使用して、文字列が正規表現と一致するかどうかを確認します。

Go では、gorilla/websocket パッケージを使用して WebSocket メッセージを送信できます。具体的な手順: WebSocket 接続を確立します。テキスト メッセージを送信します。 WriteMessage(websocket.TextMessage,[]byte("message")) を呼び出します。バイナリ メッセージを送信します。WriteMessage(websocket.BinaryMessage,[]byte{1,2,3}) を呼び出します。

Go と Go 言語は、異なる特性を持つ別個の存在です。 Go (Golang とも呼ばれます) は、同時実行性、高速なコンパイル速度、メモリ管理、およびクロスプラットフォームの利点で知られています。 Go 言語の欠点としては、他の言語に比べてエコシステムが充実していないこと、構文が厳格であること、動的型付けが欠如していることが挙げられます。

メモリ リークは、ファイル、ネットワーク接続、データベース接続などの使用されなくなったリソースを閉じることによって、Go プログラムのメモリを継続的に増加させる可能性があります。弱参照を使用してメモリ リークを防ぎ、強参照されなくなったオブジェクトをガベージ コレクションの対象にします。 go coroutine を使用すると、メモリ リークを避けるために、終了時にコルーチンのスタック メモリが自動的に解放されます。

Golang では、エラー ラッパーを使用して、元のエラーにコンテキスト情報を追加することで新しいエラーを作成できます。これを使用すると、さまざまなライブラリまたはコンポーネントによってスローされるエラーの種類を統一し、デバッグとエラー処理を簡素化できます。手順は次のとおりです。errors.Wrap 関数を使用して、元のエラーを新しいエラーにラップします。新しいエラーには、元のエラーのコンテキスト情報が含まれています。 fmt.Printf を使用してラップされたエラーを出力し、より多くのコンテキストとアクション性を提供します。異なる種類のエラーを処理する場合は、errors.Wrap 関数を使用してエラーの種類を統一します。

PHP 関数の新機能により、次のような開発プロセスが大幅に簡素化されます。 アロー関数: コードの冗長性を減らすための簡潔な匿名関数構文を提供します。プロパティの型宣言: クラス プロパティの型を指定し、コードの可読性と信頼性を向上させ、実行時に型チェックを自動的に実行します。 null 演算子: null 値を簡潔にチェックして処理し、オプションのパラメーターの処理に使用できます。
