目次
準備
Dataset
モデルを構築する
トレーニング モデル
モデルをテストする
結論

Python での画像分類の例

Jun 10, 2023 pm 03:43 PM
python 画像 分類

Python は、コンピュータ ビジョンや画像処理で非常に人気のある、広く使用されているプログラミング言語です。この記事では、Python での画像分類の例を見ていきます。画像分類は、画像内のオブジェクトやシーンを識別することを含む、コンピューター ビジョンの基本的なタスクです。この記事では、Python で深層学習フレームワーク Keras を使用して、画像分類モデルのトレーニングと予測を実装する方法を紹介します。

準備

画像分類を実行する前に、必要なソフトウェア パッケージをインストールする必要があります。必要なパッケージのリストは次のとおりです:

  • Python 3.x
  • Keras
  • TensorFlow
  • NumPy
  • Pillow

pip ツールを使用して、上記のソフトウェア パッケージをインストールできます。コマンド ラインで次のコマンドを実行して、必要なソフトウェア パッケージをインストールします。

pip install keras
pip install tensorflow
pip install numpy
pip install Pillow
ログイン後にコピー

Dataset

画像分類を行う前に、データ セットが必要です。データセットとは、画像分類モデルのトレーニングとテストに使用される注釈付き画像のセットを指します。この例では、MNIST データセットを使用します。 MNIST データセットには手書きの数字の画像が含まれており、画像分類アルゴリズムのパフォーマンスをテストするために広く使用されているデータセットです。

MNIST データ セットには、60,000 個のトレーニング画像と 10,000 個のテスト画像が含まれており、各画像のサイズは 28x28 ピクセルです。写真には 0 から 9 までの 10 個の数字のいずれかが付けられています。

Keras では、次のコードを使用して MNIST データセットをダウンロードできます:

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
ログイン後にコピー

モデルを構築する

画像分類モデルを構築する前に、アーキテクチャを定義する必要があります。モデルの。この例では、畳み込みニューラル ネットワーク (CNN) モデルを使用します。 CNN モデルは、画像分類で優れたパフォーマンスを発揮する深層学習モデルです。

Keras は、CNN モデルを構築する簡単な方法を提供します。以下は CNN モデルの例のコードです:

from keras import layers
from keras import models

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

model.summary()
ログイン後にコピー

上記のコードでは、2 つの畳み込み層と 2 つの最大プーリング層を含む CNN モデルを定義します。このモデルには、それぞれ ReLU 活性化関数を使用する 2 つの高密度層も含まれています。

トレーニング モデル

モデルを定義した後、モデルをトレーニングする必要があります。トレーニング中に、モデルは入力画像を正しい数値カテゴリにマッピングする方法を学習します。

Keras では、次のコードを使用してモデルをコンパイルおよびトレーニングできます:

model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

from keras.utils import to_categorical

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

model.fit(train_images, train_labels, epochs=5, batch_size=64)
ログイン後にコピー

上記のコードでは、まず画像を前処理してから、オプティマイザーを「 rmsprop 」として使用してモデルをコンパイルします。 」、損失関数がクロスエントロピーであるモデル。次に、トレーニング画像とラベルを使用してモデルをトレーニングします。各エポックの終わりに、テスト イメージとラベルを使用してモデルをテストします。

モデルをテストする

モデルのトレーニングが完了したら、テスト データ セットを使用してモデルの精度をテストできます。モデルは次のコードを使用してテストできます:

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('test_acc:', test_acc)
ログイン後にコピー

次に、次のコードを使用して予測を行うことができます:

predictions = model.predict(test_images)

import numpy as np

print(np.argmax(predictions[0]))
ログイン後にコピー

上記のコードでは、テスト画像セットの最初の画像を予測します。 、次に Numpy を使用して最大インデックス値を見つけ、予測結果を出力します。

結論

この記事では、Python で深層学習フレームワーク Keras を使用して画像分類モデルのトレーニングと予測を実装する方法を紹介しました。テストには MNIST データセットを使用し、トレーニングには CNN モデルを使用します。最後に、テスト画像セットで予測を行うことでモデルの精度をテストします。この例は、ディープ ラーニングとコンピューター ビジョンの入門例として使用でき、初心者が Python を使用して画像分類タスクを実装する方法を理解できるようになります。

以上がPython での画像分類の例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

mysqlは支払う必要がありますか mysqlは支払う必要がありますか Apr 08, 2025 pm 05:36 PM

MySQLには、無料のコミュニティバージョンと有料エンタープライズバージョンがあります。コミュニティバージョンは無料で使用および変更できますが、サポートは制限されており、安定性要件が低く、技術的な能力が強いアプリケーションに適しています。 Enterprise Editionは、安定した信頼性の高い高性能データベースを必要とするアプリケーションに対する包括的な商業サポートを提供し、サポートの支払いを喜んでいます。バージョンを選択する際に考慮される要因には、アプリケーションの重要性、予算編成、技術スキルが含まれます。完璧なオプションはなく、最も適切なオプションのみであり、特定の状況に応じて慎重に選択する必要があります。

インストール後にMySQLの使用方法 インストール後にMySQLの使用方法 Apr 08, 2025 am 11:48 AM

この記事では、MySQLデータベースの操作を紹介します。まず、MySQLWorkBenchやコマンドラインクライアントなど、MySQLクライアントをインストールする必要があります。 1. mysql-uroot-pコマンドを使用してサーバーに接続し、ルートアカウントパスワードでログインします。 2。CreatedAtaBaseを使用してデータベースを作成し、データベースを選択します。 3. createTableを使用してテーブルを作成し、フィールドとデータ型を定義します。 4. INSERTINTOを使用してデータを挿入し、データをクエリし、更新することでデータを更新し、削除してデータを削除します。これらの手順を習得することによってのみ、一般的な問題に対処することを学び、データベースのパフォーマンスを最適化することでMySQLを効率的に使用できます。

MySQLはダウンロード後にインストールできません MySQLはダウンロード後にインストールできません Apr 08, 2025 am 11:24 AM

MySQLのインストール障害の主な理由は次のとおりです。1。許可の問題、管理者として実行するか、SUDOコマンドを使用する必要があります。 2。依存関係が欠落しており、関連する開発パッケージをインストールする必要があります。 3.ポート競合では、ポート3306を占めるプログラムを閉じるか、構成ファイルを変更する必要があります。 4.インストールパッケージが破損しているため、整合性をダウンロードして検証する必要があります。 5.環境変数は誤って構成されており、環境変数はオペレーティングシステムに従って正しく構成する必要があります。これらの問題を解決し、各ステップを慎重に確認して、MySQLを正常にインストールします。

MySQLダウンロードファイルが破損しており、インストールできません。修復ソリューション MySQLダウンロードファイルが破損しており、インストールできません。修復ソリューション Apr 08, 2025 am 11:21 AM

mysqlダウンロードファイルは破損していますが、どうすればよいですか?残念ながら、MySQLをダウンロードすると、ファイルの破損に遭遇できます。最近は本当に簡単ではありません!この記事では、誰もが迂回を避けることができるように、この問題を解決する方法について説明します。それを読んだ後、損傷したMySQLインストールパッケージを修復するだけでなく、将来の行き詰まりを避けるために、ダウンロードとインストールプロセスをより深く理解することもできます。最初に、ファイルのダウンロードが破損した理由について話しましょう。これには多くの理由があります。ネットワークの問題は犯人です。ダウンロードプロセスの中断とネットワーク内の不安定性は、ファイル腐敗につながる可能性があります。ダウンロードソース自体にも問題があります。サーバーファイル自体が壊れており、もちろんダウンロードすると壊れています。さらに、いくつかのウイルス対策ソフトウェアの過度の「情熱的な」スキャンもファイルの破損を引き起こす可能性があります。診断問題:ファイルが本当に破損しているかどうかを判断します

mysqlはインターネットが必要ですか? mysqlはインターネットが必要ですか? Apr 08, 2025 pm 02:18 PM

MySQLは、基本的なデータストレージと管理のためにネットワーク接続なしで実行できます。ただし、他のシステムとのやり取り、リモートアクセス、または複製やクラスタリングなどの高度な機能を使用するには、ネットワーク接続が必要です。さらに、セキュリティ対策(ファイアウォールなど)、パフォーマンスの最適化(適切なネットワーク接続を選択)、およびデータバックアップは、インターネットに接続するために重要です。

高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? 高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? Apr 08, 2025 pm 06:03 PM

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

MySQLインストール後に開始できないサービスのソリューション MySQLインストール後に開始できないサービスのソリューション Apr 08, 2025 am 11:18 AM

MySQLは開始を拒否しましたか?パニックにならないでください、チェックしてみましょう!多くの友人は、MySQLのインストール後にサービスを開始できないことを発見し、彼らはとても不安でした!心配しないでください、この記事はあなたがそれを落ち着いて対処し、その背後にある首謀者を見つけるためにあなたを連れて行きます!それを読んだ後、あなたはこの問題を解決するだけでなく、MySQLサービスの理解と問題のトラブルシューティングのためのあなたのアイデアを改善し、より強力なデータベース管理者になることができます! MySQLサービスは開始に失敗し、単純な構成エラーから複雑なシステムの問題に至るまで、多くの理由があります。最も一般的な側面から始めましょう。基本知識:サービススタートアッププロセスMYSQLサービススタートアップの簡単な説明。簡単に言えば、オペレーティングシステムはMySQL関連のファイルをロードし、MySQLデーモンを起動します。これには構成が含まれます

MySQLインストール後にデータベースのパフォーマンスを最適化する方法 MySQLインストール後にデータベースのパフォーマンスを最適化する方法 Apr 08, 2025 am 11:36 AM

MySQLパフォーマンスの最適化は、インストール構成、インデックス作成、クエリの最適化、監視、チューニングの3つの側面から開始する必要があります。 1。インストール後、INNODB_BUFFER_POOL_SIZEパラメーターやclose query_cache_sizeなど、サーバーの構成に従ってmy.cnfファイルを調整する必要があります。 2。過度のインデックスを回避するための適切なインデックスを作成し、説明コマンドを使用して実行計画を分析するなど、クエリステートメントを最適化します。 3. MySQL独自の監視ツール(ShowProcessList、ShowStatus)を使用して、データベースの健康を監視し、定期的にデータベースをバックアップして整理します。これらの手順を継続的に最適化することによってのみ、MySQLデータベースのパフォーマンスを改善できます。

See all articles