ホームページ バックエンド開発 Python チュートリアル Python でのテキスト データ視覚化テクニック

Python でのテキスト データ視覚化テクニック

Jun 10, 2023 pm 10:12 PM
python 視覚化スキル テキストデータ

Python は強力なプログラミング言語であり、そのテキスト データ視覚化技術により、データの理解と分析が向上します。この記事では、データを理解し、分析しやすい形式に変換するのに役立つ、Python でのテキスト データ視覚化テクニックをいくつか紹介します。

1. ワード クラウド チャート

ワード クラウド チャートは、一般的に使用されるテキスト視覚化手法であり、テキスト データ内の重要な単語をより深く理解するのに役立ちます。 Python の wordcloud ライブラリはワード クラウド図の作成に役立ち、jieba ライブラリはワード セグメンテーション機能を提供します。以下のコードは、これら 2 つのライブラリを使用して基本的なワード クラウド プロットを生成する方法を示しています。

import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt

text = "Python是一门优秀的编程语言,它具有强大的功能和广泛的应用场景。同时,Python还拥有丰富的第三方库和工具,方便程序员进行开发和调试。"

# 使用jieba进行分词
words = jieba.cut(text)
words_list = ' '.join(words)

# 创建词云对象
wc = WordCloud(width=800, height=600, background_color='white', font_path='simhei.ttf')

# 生成词云图
wc.generate(words_list)

# 展示词云图
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()
ログイン後にコピー

上記のコードでは、最初に jieba ライブラリを使用してテキスト データをセグメント化し、次に wordcloud ライブラリを使用してワード クラウド オブジェクトを作成し、generate() メソッドを使用して単語のセグメント化結果を渡します。処理するワード クラウド オブジェクト。最後に、matplotlib ライブラリを使用して、生成されたワード クラウド グラフを表示します。

2. ヒストグラム

ヒストグラムは一般的に使用されるデータ視覚化手法であり、異なるデータ間の差異をより適切に比較するのに役立ちます。 Python では、matplotlib ライブラリを使用してヒストグラムを描画できます。以下のコードは、matplotlib ライブラリを使用して基本的なヒストグラムを作成する方法を示しています。

import matplotlib.pyplot as plt

# 数据
languages = ['Python', 'Java', 'C', 'C++', 'JavaScript']
popularity = [22.8, 17.6, 8.8, 7.6, 6.1]

# 创建柱状图
plt.bar(languages, popularity)

# 设置图形标题和坐标轴标签
plt.title('Programming Languages and Popularity')
plt.xlabel('Programming Languages')
plt.ylabel('Popularity')

# 显示柱状图
plt.show()
ログイン後にコピー

上記のコードでは、まずプログラミング言語の名前とそれぞれの人気度を含む 2 つのリストを定義し、次に plt.bar() メソッドを使用して各言語の人気度を表すヒストグラムを作成します。 . .最後に、plt.title()、plt.xlabel()、および plt.ylabel() メソッドを使用してグラフのタイトルと軸ラベルを設定し、plt.show() メソッドを使用して生成されたヒストグラムを表示します。

3. 散布図

散布図は一般的に使用されるデータ視覚化手法であり、データ間の関係をより深く理解するのに役立ちます。 Python では、matplotlib ライブラリを使用して散布図を描画できます。以下のコードは、matplotlib ライブラリを使用して基本的な散布図を作成する方法を示しています。

import matplotlib.pyplot as plt

# 数据
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = [6, 10, 8, 4, 7, 5, 3, 9, 2, 1]

# 创建散点图
plt.scatter(x, y)

# 设置图形标题和坐标轴标签
plt.title('Scatter Plot')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')

# 显示散点图
plt.show()
ログイン後にコピー

上記のコードでは、まずデータを表す 2 つのリストを定義し、次に plt.scatter() メソッドを使用して散布図を作成します。最後に、plt.title()、plt.xlabel()、および plt.ylabel() メソッドを使用してグラフのタイトルと軸ラベルを設定し、plt.show() メソッドを使用して生成された散布図を表示します。

4. 統計チャート

統計チャートは一般的に使用されるデータ視覚化手法であり、データの分布をより適切に表現するのに役立ちます。 Python では、matplotlib ライブラリを使用して統計グラフを描画できます。以下のコードは、matplotlib ライブラリを使用して基本的な統計グラフを作成する方法を示しています。

import matplotlib.pyplot as plt
import numpy as np

# 数据
np.random.seed(0)
x = np.random.randn(1000)

# 创建统计图
plt.hist(x, bins=20)

# 设置图形标题和坐标轴标签
plt.title('Histogram')
plt.xlabel('X-axis')
plt.ylabel('Frequency')

# 显示统计图
plt.show()
ログイン後にコピー

上記のコードでは、numpy ライブラリを使用して 1000 個の乱数のリストを生成し、plt.hist() メソッドを使用してこれらのデータを統計グラフに変換します。最後に、plt.title()、plt.xlabel()、および plt.ylabel() メソッドを使用してグラフのタイトルと軸のラベルを設定し、plt.show() メソッドを使用して生成された統計グラフを表示します。

上記は、Python での基本的なテキスト データ視覚化テクニックの一部であり、データの理解と分析を促進するのに役立ちます。初心者でも経験豊富な開発者でも、これらのテクニックを習得することはデータ分析プロセスにプラスの影響を与えます。

以上がPython でのテキスト データ視覚化テクニックの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:コードの例と比較 PHPおよびPython:コードの例と比較 Apr 15, 2025 am 12:07 AM

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Python vs. JavaScript:コミュニティ、ライブラリ、リソース Python vs. JavaScript:コミュニティ、ライブラリ、リソース Apr 15, 2025 am 12:16 AM

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Dockerの原則の詳細な説明 Dockerの原則の詳細な説明 Apr 14, 2025 pm 11:57 PM

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

ターミナルVSCODEでプログラムを実行する方法 ターミナルVSCODEでプログラムを実行する方法 Apr 15, 2025 pm 06:42 PM

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

See all articles