Pythonを使用してマージソートを実装する方法
マージ ソートは古典的なソート アルゴリズムです。その中心的な考え方は、ソート対象の配列をいくつかのサブ配列に分割し、これらのサブ配列をソートし、最後にソートされたサブ配列を順序付けされた配列にマージすることです。マージ ソートは、時間計算量が O(nlogn) の比較的効率的なソート アルゴリズムです。
この記事では、Pythonでマージソートを実装する方法を説明します。
- マージ ソートの実装のアイデア
マージ ソートの実装のアイデアには、分割統治とマージの 2 つの部分が含まれます。具体的な実装手順は次のとおりです:
1) ソート対象の配列を連続的に 2 つの部分に分割し、左部分と右部分を再帰的にソートします;
2) ソートされた左部分と右部分をマージします。部分を順序付けられた配列に変換します。
- Python を使用して分割統治を実装する
分割統治はマージ ソートの中心的なアイデアです。最初に分割統治の部分を実装する必要があります。
コードは次のとおりです:
def merge_sort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left_arr = merge_sort(arr[:mid]) right_arr = merge_sort(arr[mid:]) return merge(left_arr, right_arr)
この関数では、まず配列の長さが 1 以下であるかどうかを判断し、次に配列を直接返します。それ以外の場合は、配列を 2 つに分割し、左側と右側の部分をそれぞれ再帰的に並べ替えて、最後に並べ替えられた左側と右側の部分をマージする必要があります。
2.1 マージの実装
分割統治に基づいて、マージされた部分を実装する必要があります。
コードは次のとおりです:
def merge(left_arr, right_arr): i, j = 0, 0 result = [] while i < len(left_arr) and j < len(right_arr): if left_arr[i] < right_arr[j]: result.append(left_arr[i]) i += 1 else: result.append(right_arr[j]) j += 1 result += left_arr[i:] result += right_arr[j:] return result
この関数では、まず、左側と右側の部分でそれぞれ比較される要素を指すポインター i と j を初期化します。次に、継続的に左と右の要素を比較し、小さい方の要素を結果リストに追加し、ポインタを右に移動します。最後に、残りのすべての要素を結果のリストに追加して、ソートされた配列が完成します。
- 完全なコード
分割統治部分とマージ部分を組み合わせると、完全なコードは次のようになります:
def merge_sort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left_arr = merge_sort(arr[:mid]) right_arr = merge_sort(arr[mid:]) return merge(left_arr, right_arr) def merge(left_arr, right_arr): i, j = 0, 0 result = [] while i < len(left_arr) and j < len(right_arr): if left_arr[i] < right_arr[j]: result.append(left_arr[i]) i += 1 else: result.append(right_arr[j]) j += 1 result += left_arr[i:] result += right_arr[j:] return result
- Test
マージソートコードが正しいことを確認するには、テストする必要があります。
コードは次のとおりです:
arr = [5, 3, 8, 6, 4, 7, 2, 1] print(merge_sort(arr))
出力結果は次のとおりです:
[1, 2, 3, 4, 5, 6, 7, 8]
テスト 結果は、マージソートコードが正しいことを示しています。
以上がPythonを使用してマージソートを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
