ホームページ バックエンド開発 Python チュートリアル Python は Web データ視覚化テクノロジーを実装します

Python は Web データ視覚化テクノロジーを実装します

Jun 17, 2023 am 08:49 AM
python web 視覚化

Python は、さまざまなデータ型と構造を処理できる強力なプログラミング言語です。 Web データ視覚化テクノロジに関しては、Python はデータを表示するための多くのツールとライブラリを提供します。この記事では、Web データの視覚化を実現するための Python ライブラリとテクニックをいくつか紹介します。

  1. Matplotlib

Matplotlib は、Python ベースのデータ視覚化ライブラリです。折れ線グラフ、棒グラフ、円グラフ、散布図など、さまざまな種類のグラフを描画できます。このライブラリは Python 言語と簡単に統合できるため、データの視覚化に使用できます。

以下は、Matplotlib を使用してバイナリ関数をプロットする簡単なコード スニペットです:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-10, 10, 1000)
y = np.sin(x) / x

plt.plot(x, y)
plt.title('sin(x)/x plot')
plt.xlabel('x-axis')
plt.ylabel('y-axis')

plt.show()
ログイン後にコピー

上記のコードは、x 軸の範囲で sin(x)/x のグラフをプロットします。 -10 から 10 までのデータ ポイントは 1000 個あります。

  1. Bokeh

Bokeh は、インタラクティブな視覚化に焦点を当てた Python データ視覚化ライブラリです。 Bokeh は、Web ページ上でデータを表示するための高レベルの対話性とダイナミクスを提供します。

以下は、Bokeh を使用してインタラクティブな散布図を描画するための簡単なコード スニペットです:

from bokeh.plotting import figure, output_file, show
from bokeh.models import ColumnDataSource

x = [1, 2, 3, 4, 5]
y = [6, 7, 2, 4, 5]

source = ColumnDataSource(data=dict(x=x, y=y))

p = figure(title="Scatter Plot Example", x_axis_label='x', y_axis_label='y')
p.circle('x', 'y', source=source, size=20)

output_file("scatter.html")

show(p)
ログイン後にコピー

上記のコードは、ポイントのサイズがサイズに従って設定された散布図を描画します。パラメータ。散布図の一部をマウスでドラッグするとフィードバックがあるため、Web 上でのグラフのレンダリング結果は非常にインタラクティブになります。

  1. Plotly

Plotly は、Python を使用してデータ視覚化チャートを作成するために使用できるオンライン データ視覚化ツールです。このツールは、散布図、棒グラフ、ヒート マップなどを含むさまざまな種類のグラフをサポートしています。

以下は、Plotly を使用して棒グラフを描画するための簡単なコード スニペットです:

import plotly.graph_objs as go

trace = go.Bar(x=['January', 'February', 'March', 'April', 'May'],
               y=[28, 26, 36, 25, 29])

data = [trace]
layout = go.Layout(title='Bar Chart Example')

fig = go.Figure(data=data, layout=layout)
fig.show()
ログイン後にコピー

上記のコードは、各棒が各月の月収を表す棒グラフを描画します。 Plotly を使用すると、Python 環境でインタラクティブな Web データ視覚化チャートを作成できます。

概要

Python は、Web データ視覚化テクノロジに多くのツールとライブラリを提供する強力なツールです。 Python ライブラリ Matplotlib、Bokeh、および Plotly はすべてデータ視覚化を実現でき、静的グラフをサポートするだけでなく、インタラクティブなグラフも簡単に表示できます。このため、Python は、データ視覚化ツールに精通したデータ サイエンティストや開発者にとって推奨される言語の 1 つとなっています。

以上がPython は Web データ視覚化テクノロジーを実装しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:さまざまなパラダイムが説明されています PHPおよびPython:さまざまなパラダイムが説明されています Apr 18, 2025 am 12:26 AM

PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPとPythonの選択:ガイド PHPとPythonの選択:ガイド Apr 18, 2025 am 12:24 AM

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Python vs. JavaScript:学習曲線と使いやすさ Python vs. JavaScript:学習曲線と使いやすさ Apr 16, 2025 am 12:12 AM

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

PHPとPython:彼らの歴史を深く掘り下げます PHPとPython:彼らの歴史を深く掘り下げます Apr 18, 2025 am 12:25 AM

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

ターミナルVSCODEでプログラムを実行する方法 ターミナルVSCODEでプログラムを実行する方法 Apr 15, 2025 pm 06:42 PM

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

See all articles