コンピューター ビジョン アプリケーション向けの PHP での OpenCV の使用
コンピューター ビジョン (コンピューター ビジョン) は、人工知能分野の重要な分野の 1 つであり、コンピューターが画像やビデオなどの視覚信号を自動的に認識して理解し、人間とコンピューターの相互作用や自動化などのアプリケーション シナリオを実現できるようにします。コントロール。 OpenCV (オープンソース コンピュータ ビジョン ライブラリ) は、コンピュータ ビジョン、機械学習、ディープ ラーニングなどの分野で広く使用されている、人気のあるオープンソース コンピュータ ビジョン ライブラリです。
この記事では、OpenCV を使用して PHP でコンピューター ビジョン アプリケーションを実装する方法と手順を紹介します。まず、OpenCV PHP 拡張ライブラリをインストールし、次にコンピュータ ビジョン アプリケーションを実装するための PHP コードを作成する必要があります。
OpenCV の PHP 拡張ライブラリをインストールする
OpenCV の PHP 拡張ライブラリは、PHP で OpenCV を使用するためのインターフェイスを提供します。 OpenCV と PHP をインストールしている場合は、以下の手順に従って OpenCV の PHP 拡張ライブラリをインストールできます。
- OpenCV の PHP 拡張ライブラリのソース コードをダウンロードします。これは github にあります。
- ダウンロードした圧縮パッケージを解凍し、解凍先ディレクトリに移動します。
-
phpize
コマンドを実行して構成ファイルを生成します。 -
./configure
コマンドを実行して Makefile を生成します。 -
make
コマンドを実行してソース コードをコンパイルします。 -
sudo make install
コマンドを実行して、拡張ライブラリをインストールします。 - php.ini に
extension=opencv.so
構成項目を追加して、PHP が OpenCV PHP 拡張ライブラリをロードできるようにします。
コンピューター ビジョン アプリケーションを実装するための PHP コードを作成する
OpenCV の PHP 拡張ライブラリをインストールした後、コンピューター ビジョン アプリケーションを実装するための PHP コードを作成できます。以下に、一般的なコンピュータ ビジョンのアプリケーション例をいくつか紹介します。
- 顔認識
顔認識はコンピュータ ビジョンの一般的なアプリケーションの 1 つであり、顔検出や顔認識などの機能を実現できます。以下は、簡単な顔認識コードの例です。
<?php $face_cascade = cvCascadeClassifier::load('/path/to/haarcascade_frontalface_default.xml'); $src = cvimread('/path/to/image.jpg'); $gray = cvcvtColor($src, cvCOLOR_BGR2GRAY); $faces = []; $face_cascade->detectMultiScale($gray, $faces, 1.1, 3, cvCASCADE_SCALE_IMAGE, [30, 30]); foreach ($faces as $face) { $pt1 = new cvPoint($face->x, $face->y); $pt2 = new cvPoint($face->x + $face->width, $face->y + $face->height); cvectangle($src, $pt1, $pt2, [0, 0, 255], 2); } cvimshow('Face Detection', $src); cvwaitKey();
このコードでは、OpenCV の CascadeClassifier
クラスを使用して、顔検出用の Haar 特徴分類器を読み込みます。顔が検出された場合は、cvectangle
関数を使用して画像上に顔検出枠を描画します。
- 画像セグメンテーション
画像セグメンテーションは、コンピュータ ビジョンにおける重要な問題です。その目的は、さらなる画像分析と処理のために画像内のピクセルを異なる領域に分割することです。 。以下は画像セグメンテーションのサンプル コードです。
<?php $src = cvimread('/path/to/image.jpg'); $gray = cvcvtColor($src, cvCOLOR_BGR2GRAY); $median = cvmedianBlur($gray, 5); $thresh = cvdaptiveThreshold($median, 255, cvADAPTIVE_THRESH_GAUSSIAN_C, cvTHRESH_BINARY, 11, 2); $dst = new cvMat(); cvdistanceTransform($thresh, $dst, cvDIST_L2, cvDIST_MASK_5); cv ormalize($dst, $dst, 0, 1.0, cvNORM_MINMAX); $heatmap = new cvMat(); cvpplyColorMap($dst, $heatmap, cvCOLORMAP_JET); cvimshow('Segmentation', $heatmap); cvwaitKey();
このコードは、メディアン フィルタリング、適応閾値処理、距離変換などのアルゴリズムを使用して、画像セグメンテーションを実現します。セグメンテーション後、cv pplyColorMap
関数を使用して画像のヒート マップを視覚化します。
- ターゲット追跡
ターゲット追跡は、ビデオ内の特定のターゲットを追跡する機能を実現でき、コンピューター ビジョンにおける重要な研究方向です。以下は、ターゲット追跡のサンプル コードです。
<?php $tracker = cvTrackerMedianFlow::create(); $src = cvVideoCapture::create('/path/to/video.mp4'); $src->set(cvCAP_PROP_POS_FRAMES, 0); $src->read($frame); $bbox = cvselectROI($frame, false); $tracker->init($frame, $bbox); while ($src->read($frame)) { $success = $tracker->update($frame, $bbox); if ($success) { cvectangle($frame, $bbox, [0, 255, 0], 2, 1); } else { cvputText($frame, 'Tracking failure detected', new cvPoint(100, 80), cvFONT_HERSHEY_SIMPLEX, 0.75, [0, 0, 255], 2); } cvimshow('Object Tracking', $frame); if (cvwaitKey(1) == 27) { break; } }
OpenCV の TrackerMedianFlow
クラスは、ターゲット追跡を実装するためにコードで使用されます。各フレームで、tracker->update
関数を使用してターゲット ボックスを更新し、cvectangle
関数を使用して画像内にトラッキング ボックスを描画します。
概要
この記事では、PHP で OpenCV を使用してコンピューター ビジョン アプリケーションを実装する方法と手順を紹介します。 OpenCV の PHP 拡張ライブラリをインストールし、PHP コードを記述することで、顔認識、画像セグメンテーション、ターゲット追跡などのさまざまなコンピュータ ビジョン アプリケーションを簡単に実装できます。これらのアプリケーションは、セキュリティ監視、人間とコンピュータの対話、自動化制御などの分野で重要な役割を果たします。
以上がコンピューター ビジョン アプリケーション向けの PHP での OpenCV の使用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHP 8.4 では、いくつかの新機能、セキュリティの改善、パフォーマンスの改善が行われ、かなりの量の機能の非推奨と削除が行われています。 このガイドでは、Ubuntu、Debian、またはその派生版に PHP 8.4 をインストールする方法、または PHP 8.4 にアップグレードする方法について説明します。

Visual Studio Code (VS Code とも呼ばれる) は、すべての主要なオペレーティング システムで利用できる無料のソース コード エディター (統合開発環境 (IDE)) です。 多くのプログラミング言語の拡張機能の大規模なコレクションを備えた VS Code は、

あなたが経験豊富な PHP 開発者であれば、すでにそこにいて、すでにそれを行っていると感じているかもしれません。あなたは、運用を達成するために、かなりの数のアプリケーションを開発し、数百万行のコードをデバッグし、大量のスクリプトを微調整してきました。

このチュートリアルでは、PHPを使用してXMLドキュメントを効率的に処理する方法を示しています。 XML(拡張可能なマークアップ言語)は、人間の読みやすさとマシン解析の両方に合わせて設計された多用途のテキストベースのマークアップ言語です。一般的にデータストレージに使用されます

JWTは、JSONに基づくオープン標準であり、主にアイデンティティ認証と情報交換のために、当事者間で情報を安全に送信するために使用されます。 1。JWTは、ヘッダー、ペイロード、署名の3つの部分で構成されています。 2。JWTの実用的な原則には、JWTの生成、JWTの検証、ペイロードの解析という3つのステップが含まれます。 3. PHPでの認証にJWTを使用する場合、JWTを生成および検証でき、ユーザーの役割と許可情報を高度な使用に含めることができます。 4.一般的なエラーには、署名検証障害、トークンの有効期限、およびペイロードが大きくなります。デバッグスキルには、デバッグツールの使用とロギングが含まれます。 5.パフォーマンスの最適化とベストプラクティスには、適切な署名アルゴリズムの使用、有効期間を合理的に設定することが含まれます。

文字列は、文字、数字、シンボルを含む一連の文字です。このチュートリアルでは、さまざまな方法を使用してPHPの特定の文字列内の母音の数を計算する方法を学びます。英語の母音は、a、e、i、o、u、そしてそれらは大文字または小文字である可能性があります。 母音とは何ですか? 母音は、特定の発音を表すアルファベットのある文字です。大文字と小文字など、英語には5つの母音があります。 a、e、i、o、u 例1 入力:string = "tutorialspoint" 出力:6 説明する 文字列「TutorialSpoint」の母音は、u、o、i、a、o、iです。合計で6元があります

静的結合(静的::) PHPで後期静的結合(LSB)を実装し、クラスを定義するのではなく、静的コンテキストで呼び出しクラスを参照できるようにします。 1)解析プロセスは実行時に実行されます。2)継承関係のコールクラスを検索します。3)パフォーマンスオーバーヘッドをもたらす可能性があります。

PHPの魔法の方法は何ですか? PHPの魔法の方法には次のものが含まれます。1。\ _ \ _コンストラクト、オブジェクトの初期化に使用されます。 2。\ _ \ _リソースのクリーンアップに使用される破壊。 3。\ _ \ _呼び出し、存在しないメソッド呼び出しを処理します。 4。\ _ \ _ get、dynamic属性アクセスを実装します。 5。\ _ \ _セット、動的属性設定を実装します。これらの方法は、特定の状況で自動的に呼び出され、コードの柔軟性と効率を向上させます。
