ホームページ テクノロジー周辺機器 AI 情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めます

情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めます

Jun 27, 2023 pm 04:26 PM
機械学習 モデル

マルチモーダル機械学習は、さまざまなシナリオで目覚ましい進歩を遂げました。ただし、マルチモーダル学習モデルの信頼性については、詳細な研究が不足しています。 「情報とは不確実性の除去です。」マルチモーダル機械学習の本来の目的はこれと一致しています - モダリティを追加することで予測をより正確かつ信頼できるものにすることができます。しかし、ICML2023で最近発表された論文「マルチモーダル学習の校正」では、現在のマルチモーダル学習手法がこの信頼性の仮定に違反していることが判明し、詳細な分析と修正が行われました。

情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めます写真


  • ##論文 Arxiv: https:// arxiv .org/abs/2306.01265
  • コード GitHub: https://github.com/QingyangZhang/CML
##現在のマルチモーダル分類法の信頼性は低い。つまり、いくつかのモードが除去されると、モデルはより高い信頼度を生成する可能性があり、これは情報理論「情報とは、次のものを除去することである」に違反する。不確実性」が基本原則です。この問題に対処するために、この記事ではマルチモーダル学習の調整方法を提案します。この方法は、さまざまなマルチモーダル学習パラダイムに導入して、マルチモーダル学習モデルの合理性と信頼性を向上させることができます。

写真情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めます

この研究は、現在のマルチモーダル学習方法には信頼性の低い予測信頼性の問題があることを指摘しています。部分的なモダリティに依存して信頼度を推定する。特に、この研究では、特定のモードが損傷すると、現在のモデル推定の信頼性が高まることがわかりました。この不合理な問題を解決するために、著者らは直観的なマルチモーダル学習原理を提案しています。モダリティが除去された場合、モデルの予測信頼度は増加しないはずです。ただし、現在のモデルは、すべてのモダリティを公平に考慮するのではなく、モダリティのサブセットを信じ、影響を受ける傾向があります。これはモデルの堅牢性にさらに影響します。つまり、特定のモードが損傷すると、モデルは容易に影響を受けます。

情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めます

#上記の問題を解決するために、現在のいくつかの方法では、温度スケーリングやベイジアン学習方法などの既存の不確かさ校正方法が採用されています。これらの方法は、従来のトレーニング/推論方法よりも正確な信頼度推定を構築できます。しかし、これらの手法は最終的な融合結果の信頼度推定値と精度を一致させるだけであり、モーダル情報量と信頼度の関係を明示的に考慮していないため、本質的にマルチモーダル学習モデルの信頼性を向上させることはできません。

著者は、「マルチモーダル学習の校正 (CML)」と呼ばれる新しい正則化手法を提案しています。この手法では、ペナルティ項を追加して、予測信頼性と情報コンテンツ間の一貫性を実現することで、モデルの予測信頼性と情報コンテンツ間の一致関係を強制します。この手法は、モダリティが削除されると予測の信頼度は減少するはず (少なくとも増加すべきではない) という自然な直観に基づいており、本質的に信頼度の調整を向上させることができます。具体的には、モダリティが削除されたときに予測信頼度が高まるサンプルにペナルティを追加することで、モデルに直観的な順序関係を強制的に学習させるための単純な正則化項が提案されています。

##上記の制約は通常の損失であり、モーダル情報が削除され信頼性が高まるとペナルティとして現れます。

情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めます

実験結果は、CML 正則化により、既存のマルチモーダル学習方法の予測信頼性の信頼性が大幅に向上することを示しています。さらに、CML は分類精度を向上させ、モデルの堅牢性を向上させることができます。 情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めます

マルチモーダル機械学習はさまざまなシナリオで大幅な進歩を遂げてきましたが、マルチモーダル機械学習モデルの信頼性は依然として解決する必要がある問題です。この論文は、広範な実証研究を通じて、現在の多峰性分類法には信頼性の低い予測信頼性の問題があり、情報理論の原則に違反していることを発見しました。この問題に対処するために、研究者らは CML 正則化手法を提案しました。この手法は既存のモデルに柔軟に導入でき、信頼性の調整、分類精度、モデルの堅牢性の点でパフォーマンスを向上させることができます。この新技術は将来のマルチモーダル学習において重要な役割を果たし、機械学習の信頼性と実用性を向上させると考えられています。

以上が情報理論キャリブレーション技術に基づいて、CML はマルチモーダル機械学習の信頼性を高めますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

OpenAI データは必要ありません。大規模なコード モデルのリストに加わりましょう。 UIUC が StarCoder-15B-Instruct をリリース OpenAI データは必要ありません。大規模なコード モデルのリストに加わりましょう。 UIUC が StarCoder-15B-Instruct をリリース Jun 13, 2024 pm 01:59 PM

ソフトウェア テクノロジの最前線に立つ UIUC Zhang Lingming のグループは、BigCode 組織の研究者とともに、最近 StarCoder2-15B-Instruct 大規模コード モデルを発表しました。この革新的な成果により、コード生成タスクにおいて大きな進歩が達成され、CodeLlama-70B-Instruct を上回り、コード生成パフォーマンス リストのトップに到達しました。 StarCoder2-15B-Instruct のユニークな特徴は、その純粋な自己調整戦略であり、トレーニング プロセス全体がオープンで透過的で、完全に自律的で制御可能です。このモデルは、高価な手動アノテーションに頼ることなく、StarCoder-15B 基本モデルの微調整に応じて、StarCoder2-15B を介して数千の命令を生成します。

総合的にDPOを超える:Chen Danqi氏のチームはシンプルなプリファレンス最適化SimPOを提案し、最強の8Bオープンソースモデルも洗練させた 総合的にDPOを超える:Chen Danqi氏のチームはシンプルなプリファレンス最適化SimPOを提案し、最強の8Bオープンソースモデルも洗練させた Jun 01, 2024 pm 04:41 PM

大規模言語モデル (LLM) を人間の価値観や意図に合わせるには、人間のフィードバックを学習して、それが有用で、正直で、無害であることを確認することが重要です。 LLM を調整するという点では、ヒューマン フィードバックに基づく強化学習 (RLHF) が効果的な方法です。 RLHF 法の結果は優れていますが、最適化にはいくつかの課題があります。これには、報酬モデルをトレーニングし、その報酬を最大化するためにポリシー モデルを最適化することが含まれます。最近、一部の研究者はより単純なオフライン アルゴリズムを研究しており、その 1 つが直接優先最適化 (DPO) です。 DPO は、RLHF の報酬関数をパラメータ化することで、選好データに基づいてポリシー モデルを直接学習するため、明示的な報酬モデルの必要性がなくなります。この方法は簡単で安定しています

Yolov10: 詳細な説明、展開、アプリケーションがすべて 1 か所にまとめられています。 Yolov10: 詳細な説明、展開、アプリケーションがすべて 1 か所にまとめられています。 Jun 07, 2024 pm 12:05 PM

1. はじめに ここ数年、YOLO は、計算コストと検出パフォーマンスの効果的なバランスにより、リアルタイム物体検出の分野で主流のパラダイムとなっています。研究者たちは、YOLO のアーキテクチャ設計、最適化目標、データ拡張戦略などを調査し、大きな進歩を遂げました。同時に、後処理に非最大抑制 (NMS) に依存すると、YOLO のエンドツーエンドの展開が妨げられ、推論レイテンシに悪影響を及ぼします。 YOLO では、さまざまなコンポーネントの設計に包括的かつ徹底的な検査が欠けており、その結果、大幅な計算冗長性が生じ、モデルの機能が制限されます。効率は最適ではありませんが、パフォーマンス向上の可能性は比較的大きくなります。この作業の目標は、後処理とモデル アーキテクチャの両方から YOLO のパフォーマンス効率の境界をさらに改善することです。この目的を達成するために

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

See all articles