ホームページ バックエンド開発 Python チュートリアル Python を学習して Qiniu Cloud インターフェースのドッキングを実装し、画像フィルターの合成とサイズ調整を実現します

Python を学習して Qiniu Cloud インターフェースのドッキングを実装し、画像フィルターの合成とサイズ調整を実現します

Jul 06, 2023 am 09:25 AM
python インターフェースのドッキング キニウユン

Qiniu Cloud インターフェイス ドッキングを実装し、画像フィルターの合成とサイズ調整を実現するために Python を学習する

現代のソーシャル メディアとグラフィック デザインの分野では、画像処理とフィルター効果の合成がますます重要になっています。今日は、Python 言語を使用して Qiniu Cloud インターフェースのドッキングを実装し、画像フィルターの合成とサイズ調整の機能を実現する方法を学びます。

Qiniu Cloud は、開発者が使用できる一連の豊富な API を提供する主要なクラウド ストレージ プラットフォームです。インターフェイスのドッキングには Qiniu Cloud の Python SDK を使用します。まず、Qiniu Cloud プラットフォームにアカウントを登録し、ストレージスペースを作成し、対応するアクセスキーと秘密キーを取得する必要があります。

次に、Qiniu Cloud の Python SDK をインストールする必要があります。ターミナルまたはコマンド プロンプトを開き、次のコマンドを実行して SDK をインストールします。

pip install qiniu
ログイン後にコピー

インストールが完了したら、コードの記述を開始できます。まず、必要なライブラリをインポートする必要があります:

import qiniu
from PIL import Image, ImageFilter
import requests
ログイン後にコピー

次に、Qiniu クラウドのアクセス キーと秘密キーを構成する必要があります:

access_key = "<your-access-key>"
secret_key = "<your-secret-key>"
ログイン後にコピー

次に、Qiniu の認証を作成する必要がありますクラウド オブジェクト:

auth = qiniu.Auth(access_key, secret_key)
ログイン後にコピー

次に、写真を Qiniu クラウド ストレージ スペースにアップロードする関数を定義する必要があります:

def upload_image(file_path, key):
    token = auth.upload_token("<your-bucket-name>")
    ret, info = qiniu.put_file(token, key, file_path)
    if info.status_code == 200:
        return True
    else:
        return False
ログイン後にコピー

この関数では、最初にアップロード資格情報 (トークン) を生成し、次に使用しますqiniu.put_file() メソッドを使用してファイルをアップロードします。アップロードが成功すると、関数は True を返し、アップロードが失敗すると、関数は False を返します。

次に、画像にフィルター効果を適用する関数を実装できます:

def apply_filter(img_path, filter_name):
    img = Image.open(img_path)
    filtered_img = img.filter(filter_name)
    filtered_img.save("filtered_image.jpg")
ログイン後にコピー

この関数では、まず PIL ライブラリの Image.open() メソッドを使用して画像を開きます。次に、ImageFilter モジュールのフィルター関数を使用して画像を処理します。処理が完了したら、save()メソッドを使用して、フィルター効果をローカルに適用した後の画像を保存します。

最後に、画像のサイズを変更する関数を作成できます:

def resize_image(img_path, width, height):
    img = Image.open(img_path)
    resized_img = img.resize((width, height))
    resized_img.save("resized_image.jpg")
ログイン後にコピー

この関数では、PIL ライブラリの Image.open() メソッドを使用して画像を開いてから、画像のサイズを調整するには、resize()メソッドを使用します。調整が完了したら、save() メソッドを使用して、調整した画像をローカルに保存します。

ここで、上記の関数を呼び出す main 関数を作成できます:

def main():
    file_path = "<your-image-file-path>"
    key = "<your-file-key>"
    
    # 上传图片到七牛云
    if upload_image(file_path, key):
        print("Image upload successful!")
        
        # 应用滤镜效果
        apply_filter("filtered_image.jpg", ImageFilter.BLUR)
        
        # 调整图片尺寸
        resize_image("resized_image.jpg", 800, 600)
    else:
        print("Image upload failed!")
ログイン後にコピー

この main 関数では、Qiniu Cloud で画像ファイルのパスとファイル キーを設定する必要があります。次に、最初に、upload_image() 関数を呼び出して画像を Qiniu Cloud にアップロードし、アップロードが成功したら、apply_filter() 関数と Resize_image() 関数を順番に呼び出して、フィルター効果を適用し、画像サイズを調整します。 。

最後に、コードの最後で main() 関数を呼び出してプログラム全体を実行します。

if __name__ == "__main__":
    main()
ログイン後にコピー

これで、上記のコードを Python スクリプト ファイルとして保存して実行できます。 . 画像フィルタ合成とサイズ調整の機能を実現しました。

要約すると、Python を使用して Qiniu Cloud インターフェース ドッキングを実装する方法を学ぶことで、画像を Qiniu Cloud ストレージ スペースに簡単にアップロードし、フィルター効果を適用したり、画像サイズを調整したりできるようになります。これにより、ソーシャル メディアやグラフィック デザインの世界で画像を処理し、最適化することができます。この記事が Python と Qiniu Cloud 間のインターフェイスを学ぶのに役立つことを願っています。

以上がPython を学習して Qiniu Cloud インターフェースのドッキングを実装し、画像フィルターの合成とサイズ調整を実現しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ランプアーキテクチャの下でnode.jsまたはPythonサービスを効率的に統合する方法は? ランプアーキテクチャの下でnode.jsまたはPythonサービスを効率的に統合する方法は? Apr 01, 2025 pm 02:48 PM

多くのウェブサイト開発者は、ランプアーキテクチャの下でnode.jsまたはPythonサービスを統合する問題に直面しています:既存のランプ(Linux Apache MySQL PHP)アーキテクチャWebサイトのニーズ...

LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

Scapy Crawlerを使用するときにパイプラインの永続的なストレージファイルを書き込めない理由は何ですか? Scapy Crawlerを使用するときにパイプラインの永続的なストレージファイルを書き込めない理由は何ですか? Apr 01, 2025 pm 04:03 PM

Scapy Crawlerを使用する場合、パイプラインの永続的なストレージファイルを書くことができない理由は?ディスカッションデータクローラーにScapy Crawlerを使用することを学ぶとき、あなたはしばしば...

Python hourglassグラフ図面:可変未定義エラーを避ける方法は? Python hourglassグラフ図面:可変未定義エラーを避ける方法は? Apr 01, 2025 pm 06:27 PM

Python:Hourglassグラフィック図面と入力検証この記事では、Python NoviceがHourglass Graphic Drawingプログラムで遭遇する可変定義の問題を解決します。コード...

PythonプロセスプールがTCPリクエストを同時に処理し、クライアントが立ち往生する理由は何ですか? PythonプロセスプールがTCPリクエストを同時に処理し、クライアントが立ち往生する理由は何ですか? Apr 01, 2025 pm 04:09 PM

Python Process Poolは、クライアントが立ち往生する原因となる同時TCP要求を処理します。ネットワークプログラミングにPythonを使用する場合、同時のTCP要求を効率的に処理することが重要です。 ...

Python functools.partialオブジェクトによって内部的にカプセル化された元の関数を表示する方法は? Python functools.partialオブジェクトによって内部的にカプセル化された元の関数を表示する方法は? Apr 01, 2025 pm 04:15 PM

python functools.partialオブジェクトのpython functools.partialを使用してPythonを使用する視聴方法を深く探索します。

Pythonクロスプラットフォームデスクトップアプリケーション開発:どのGUIライブラリが最適ですか? Pythonクロスプラットフォームデスクトップアプリケーション開発:どのGUIライブラリが最適ですか? Apr 01, 2025 pm 05:24 PM

Pythonクロスプラットフォームデスクトップアプリケーション開発ライブラリの選択多くのPython開発者は、WindowsシステムとLinuxシステムの両方で実行できるデスクトップアプリケーションを開発したいと考えています...

GoogleとAWSはパブリックピピイメージソースを提供していますか? GoogleとAWSはパブリックピピイメージソースを提供していますか? Apr 01, 2025 pm 05:15 PM

多くの開発者はPypi(PythonPackageIndex)に依存しています...

See all articles