目次
実験と分析
ホームページ テクノロジー周辺機器 AI GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています

Jul 17, 2023 pm 04:57 PM
モデル チューニング

GPT-4 の出現以来、人々は、優れた言語理解能力、生成能力、論理的推論能力などを含む、その強力な創発能力に驚かされてきました。これらの機能により、GPT-4 は機械学習における最も最先端のモデルの 1 つとなります。ただし、OpenAIはこれまでのところGPT-4の技術的な詳細を明らかにしていない。

先月、George Hotz は、Latent Space と呼ばれる AI テクノロジー ポッドキャストのインタビューで GPT-4 について言及し、GPT-4 は実際にはハイブリッド モデルであると述べました。具体的には、George Hotez 氏は、GPT-4 は 8 つのエキスパート モデルで構成される統合システムを使用しており、各モデルには 2,200 億のパラメーター (GPT-3 の 1,750 億のパラメーターよりわずかに多い) があり、これらのモデルは異なるデータとタスクでトレーニングされると述べました。配布物。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています

#Latent Space からのインタビュー。

これは George Hotez による単なる推測かもしれませんが、このモデルにはある程度の正当性があります。最近、Google、カリフォルニア大学バークレー校、MIT、その他の機関の研究者が共同で発表した論文では、ハイブリッド エキスパート モデル (MoE) と命令チューニングの組み合わせにより大規模言語モデル (LLM) のパフォーマンスを大幅に向上できることが確認されました。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています写真

論文アドレス: https://arxiv.org/pdf/2305.14705.pdf

スパース混合エキスパート モデルは、推論のコストを増加させることなく、学習可能なパラメーターを大規模言語モデル (LLM) に追加できる特別なニューラル ネットワーク アーキテクチャです。命令チューニングは、LLM が命令に従うようにトレーニングするための手法です。この研究では、MoE モデルは高密度モデルよりも命令チューニングの恩恵を受けることが判明したため、MoE と命令チューニングを組み合わせることが提案されました。

この研究は、命令調整を行わない場合の

  • を含む 3 つの実験設定で経験的に実施されました。単一の下流タスク;
  • 命令チューニング後、下流タスクに対してコンテキスト内で数サンプルまたはゼロサンプルの一般化を実行します;
  • 命令の調整の後には、個々の下流タスクのさらなる微調整が続きます。

最初のケースでは、MoE モデルは一般に、同じ計算能力を持つ高密度モデルよりも劣ります。しかし、命令チューニングの導入(2番目と3番目のケース)により、FLAN-MoE_32B(Fine-tuned LAnguage Net、略称Flanは命令チューニングモデル、Flan-MoEは命令チューニング)の優れたMoE)がFLANを上回りました。 -PALM_62B は 4 つのベンチマーク タスクで発生しましたが、FLOP の 3 分の 1 しか使用していません。

次の図に示すように、命令チューニングを使用する前は、MoE→FT は T5→FT ほど良好ではありません。命令チューニング後、Flan-MoE→FT は Flan-T5→FT よりも優れています。 MoE は、高密度モデル (10.2) よりも命令チューニング (15.6) からより多くの利益を得ています:

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています写真

GPT -4 のようですハイブリッド モデルを採用するにはいくつかの根拠があり、教育省は実際に命令チューニングから大きなメリットを得ることができます:

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています写真

##方法の概要

研究者らは、FLAN-MOE (指示によって微調整された疎混合エキスパート モデルのセット) モデルで疎活性化 MoE (混合エキスパート) を使用しました。さらに、他の Transformer レイヤーのフィードフォワード コンポーネントを MoE レイヤーに置き換えました。

各 MoE レイヤーは「エキスパート」として理解でき、ソフトマックス アクティベーション関数を使用してこれらのエキスパートをモデル化し、確率分布を取得します。

各 MoE レイヤーには多くのパラメータがありますが、エキスパートはまばらにアクティブになります。これは、特定の入力トークンに対して、限られた専門家のサブセットのみがタスクを完了できることを意味し、モデルの処理能力が向上します。

E 人の専門家がいる MoE 層の場合、これにより O (E^2) 個の異なるフィードフォワード ネットワークの組み合わせが効果的に提供され、計算の柔軟性が向上します。


FLAN-MoE は命令チューニング モデルであるため、命令チューニングは非常に重要です。この研究では、FLAN 集合データ セットに基づいて FLAN-MOE を微調整しました。さらに、この研究では、各 FLAN-MOE の入力シーケンス長を 2048 に、出力シーケンス長を 512 に調整しました。

実験と分析

平均すると、Flan-MoE は追加の計算を追加することなく、すべてのモデル スケールで優れたパフォーマンスを発揮します。 (フラン-T5)。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています写真

専門家の数。図 4 は、専門家の数が増加するにつれて、モデルは最初は、問題空間内の異なるタスクや側面を処理できる、より豊富な特殊なサブネットワークのセットの恩恵を受けることを示しています。このアプローチにより、MoE は適応性が高く、複雑なタスクを効率的に処理できるようになり、全体的なパフォーマンスが向上します。ただし、専門家の数が増加し続けるにつれて、モデルのパフォーマンスの向上は減少し始め、最終的には飽和点に達します。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています

図 3 と表 1 は、さまざまなルーティングの決定が命令チューニングのパフォーマンスにどのような影響を与えるかを詳しく示しています。FLAN 経由スイッチ戦略と FLAN-GS 戦略を比較すると、より多くのエキスパートをアクティブにすると、4 つのベンチマーク全体でパフォーマンスが向上することがわかります。これらのベンチマークの中で、MMLU-Direct モデルが最も大幅な改善を示し、BASE/LARGE サイズのモデルで 38.0% から 39.9% に増加しました。

注目すべきことに、同等の容量の高密度モデルと比較して、命令チューニングにより、MMLU、BBH、内部 QA および推論ベンチマークの維持における MoE モデルのパフォーマンスが大幅に増幅されました。これらの利点は、大規模な MoE モデルではさらに増幅されます。たとえば、命令チューニングにより ST_32B ではパフォーマンスが 45.2% 向上しますが、FLAN-PALM_62B ではこの向上は約 6.6% と比較的小さいです。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています

モデル拡張を行う場合、Flan-MoE (Flan-ST-32B) は Flan-PaLM-62B よりも優れたパフォーマンスを発揮します。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています写真

#さらに、この調査では、指定されたモデルのゲート機能、エキスパート モジュール、および MoE がフリーズされます。パラメータに関して実験が行われました。以下の表 2 に示すように、実験結果は、エキスパート モジュールまたは MoE コンポーネントのフリーズがモデルのパフォーマンスに悪影響を与えることを示しています。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています

逆に、フリーズ ゲート機能を使用すると、明らかではありませんが、モデルのパフォーマンスがわずかに向上します。研究者らは、この観察は FLAN-MOE のアンダーフィッティングに関連していると推測しています。この研究では、以下の図 5 に示すアブレーション研究の微調整データ効率を調査するためにアブレーション実験も実施しました。

GPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されています

最後に、MoE の直接微調整と FLAN-MOE のギャップを比較するために、この研究ではシングルタスク微調整を実施しました。 MoE のシングルタスク実験は、微調整された FLAN-MoE モデルと高密度モデルで実施され、その結果が以下の図 6 に示されています。 #興味のある読者は、論文の原文を読んでさらに詳しい研究内容を学ぶことができます。

以上がGPT-4はハイブリッド大型モデルを使用していますか?研究により、MoE+ 命令チューニングにより大規模モデルのパフォーマンスが実際に向上することが証明されていますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Apr 01, 2024 pm 07:46 PM

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

DualBEV: BEVFormer および BEVDet4D を大幅に上回る、本を開いてください! DualBEV: BEVFormer および BEVDet4D を大幅に上回る、本を開いてください! Mar 21, 2024 pm 05:21 PM

この論文では、自動運転においてさまざまな視野角 (遠近法や鳥瞰図など) から物体を正確に検出するという問題、特に、特徴を遠近法 (PV) 空間から鳥瞰図 (BEV) 空間に効果的に変換する方法について検討します。 Visual Transformation (VT) モジュールを介して実装されます。既存の手法は、2D から 3D への変換と 3D から 2D への変換という 2 つの戦略に大別されます。 2D から 3D への手法は、深さの確率を予測することで高密度の 2D フィーチャを改善しますが、特に遠方の領域では、深さ予測に固有の不確実性により不正確さが生じる可能性があります。 3D から 2D への方法では通常、3D クエリを使用して 2D フィーチャをサンプリングし、Transformer を通じて 3D と 2D フィーチャ間の対応のアテンション ウェイトを学習します。これにより、計算時間と展開時間が増加します。

See all articles