第4パラダイム「四舟王」大型モデルが「2023年度汎用人工知能革新的応用事例集」に選出されました
最近、2023年世界人工知能会議中に、中国情報通信技術院は「2023年汎用人工知能革新的応用事例集」を発表し、4番目のパラダイム「Shi Shuo」大型モデルが選ばれました。
「2023年汎用人工知能の革新的応用事例集」は、中国情報通信技術院中国東部支部、中国情報通信技術院クラウドコンピューティングおよびビッグデータ研究院、およびメタバースイノベーション探査アレイ。中国東部支部は、事例収集ワーキンググループを設置し、「政府、産業界、学界、研究、応用」の各界から専門家を特別に招待し、事例シナリオのニーズ、技術応用、イノベーション能力、応用価値、および応用価値を総合的に検討しています。他の次元は、2023 年の一般的な人工知能の大規模モデルとツールの実践例を選択します。 5月に事例集を開始して以来、全国100以上の事業所からの積極的な事例提出があり、最終的に27社を選定することができました。
今年 2 月、Fourth Paradigm は、生成 AI によるエンタープライズ レベル ソフトウェア (AIGS) の再構築に特化した大規模モデル「Shishuo」を正式にリリースしました。 「Shishuo」は、従業員がエンタープライズ ソフトウェアと対話する方法を再定義します。従業員は、音声、テキスト、画像、ビデオなどのマルチモーダルな方法を通じて問い合わせを開始したり、指示を与えることができ、エンタープライズ レベルのソフトウェアのユーザー エクスペリエンスと開発効率を包括的に向上させます。さらに、「Shishuo」は、信頼できるコンテンツ、制御可能なコスト、データセキュリティという 3 つの大きな特徴を備えており、企業の大規模モデルのアプリケーション革新を強力にサポートします。
「Shishuo」のリリース以来、私たちは金融、小売、航空製造、医療、物流、オペレーター、不動産仲介などの分野の数百の企業顧客と大規模モデルの実装に関する関連調査を実施してきました。蓄積された経験 中国で初期の数十の AIGC 産業用アプリケーションを開発しました。
以上が第4パラダイム「四舟王」大型モデルが「2023年度汎用人工知能革新的応用事例集」に選出されましたの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

5月30日、TencentはHunyuanモデルの包括的なアップグレードを発表し、Hunyuanモデルに基づくアプリ「Tencent Yuanbao」が正式にリリースされ、AppleおよびAndroidアプリストアからダウンロードできるようになりました。前のテスト段階のフンユアン アプレット バージョンと比較して、Tencent Yuanbao は、日常生活シナリオ向けの AI 検索、AI サマリー、AI ライティングなどのコア機能を提供し、Yuanbao のゲームプレイもより豊富で、複数の機能を提供します。 、パーソナルエージェントの作成などの新しいゲームプレイ方法が追加されます。 Tencent Cloud 副社長で Tencent Hunyuan 大型モデルの責任者である Liu Yuhong 氏は、「テンセントは、最初に大型モデルを開発しようとはしません。」と述べました。 Tencent Hunyuan の大型モデルは、ビジネス シナリオにおける豊富で大規模なポーランド テクノロジーを活用しながら、ユーザーの真のニーズを洞察します。

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

1. 背景の紹介 まず、Yunwen Technology の開発の歴史を紹介します。 Yunwen Technology Company ...2023 年は大規模モデルが普及する時期であり、多くの企業は大規模モデルの後、グラフの重要性が大幅に低下し、以前に検討されたプリセット情報システムはもはや重要ではないと考えています。しかし、RAG の推進とデータ ガバナンスの普及により、より効率的なデータ ガバナンスと高品質のデータが民営化された大規模モデルの有効性を向上させるための重要な前提条件であることがわかり、ますます多くの企業が注目し始めています。知識構築関連コンテンツへ。これにより、知識の構築と処理がより高いレベルに促進され、探索できる技術や方法が数多く存在します。新しいテクノロジーの出現によってすべての古いテクノロジーが打ち破られるわけではなく、新旧のテクノロジーが統合される可能性があることがわかります。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

6月13日のニュースによると、Byteの「Volcano Engine」公開アカウントによると、Xiaomiの人工知能アシスタント「Xiao Ai」はVolcano Engineとの協力に達し、両社はbeanbao大型モデルに基づいて、よりインテリジェントなAIインタラクティブ体験を実現するとのこと。 。 ByteDance が作成した大規模な豆包モデルは、毎日最大 1,200 億のテキスト トークンを効率的に処理し、3,000 万個のコンテンツを生成できると報告されています。 Xiaomi は、Doubao 大型モデルを使用して、独自モデルの学習能力と推論能力を向上させ、ユーザーのニーズをより正確に把握するだけでなく、より速い応答速度とより包括的なコンテンツ サービスを提供する新しい「Xiao Ai Classmate」を作成しました。たとえば、ユーザーが複雑な科学的概念について質問する場合、&ldq
