データ分析手法にはどのようなものがありますか?
データ分析手法には、1. データセットの基本的な統計項目を計算して要約し、データの特徴や分布を記述する記述統計分析、2. データの予備分析を行う探索的データ分析があります。データセット 探索、データ内の隠れたパターン、異常、傾向、その他の情報を発見する 3. 仮説検定、統計的手法を使用して仮説が正しいかどうかを評価する 4. 回帰分析、関係を説明する数学的モデルを確立する独立変数と従属変数の関係 5. クラスター分析、データセット内の観測オブジェクトを類似性などに基づいて異なるグループまたはカテゴリに分割します。
#この記事の動作環境: Windows 10 システム、DELL G3 コンピューター。
データ分析方法とは、有用な情報と洞察を得るためにデータを整理、クリーニング、解釈するプロセスを指します。データ分析の分野では、データの処理と分析に使用できるさまざまな方法があります。ここでは、一般的な方法をいくつか紹介します。
1. 記述統計分析:
記述統計分析は、データセットの基本的な統計項目を計算して要約することによって、データの特性と分布を記述します。通常、データの中心傾向、分散、分布をより深く理解するために、データの平均、中央値、標準偏差、頻度分布などの指標の計算が含まれます。
2. 探索的データ分析 (EDA):
探索的データ分析は、データ内の隠れたパターン、異常、およびパターンを発見するためのデータセットの予備的な探索です。トレンドやその他の情報。これには、ヒストグラム、散布図、箱ひげ図などの視覚的なグラフの描画や、データ内の相関や異常の発見に役立つ共分散や相関係数などの統計指標の計算が含まれます。
3. 仮説テスト:
仮説テストは、統計的手法を使用して仮説が正しいかどうかを評価するプロセスです。通常、これには 2 つの仮説が含まれます。1 つは帰無仮説、もう 1 つは対立仮説です。統計検定の p 値を計算することで、帰無仮説が棄却されたかどうかを判断し、データセット内の関係や差異について推論することができます。
4. 回帰分析:
回帰分析は、数学モデルを確立することで独立変数と従属変数の間の関係を記述し、このモデルを使用して未知の要因を分析します。予測のために。一般的な回帰分析手法には、線形回帰、多項式回帰、ロジスティック回帰などが含まれます。回帰分析は、変数間の関係を理解し、予測や意思決定のサポートを行うのに役立ちます。
5. クラスター分析:
クラスター分析は、データセット内の観察されたオブジェクトを類似性に基づいて異なるグループまたはカテゴリに分割するプロセスです。観察されたオブジェクト間の類似性または距離を計算することにより、類似したオブジェクトをクラスター化し、異なるオブジェクトを分離します。クラスター分析は、ターゲットを絞ったマーケティング活動を実施するために、市場のセグメンテーション、顧客の分類、その他のアプリケーション シナリオでよく使用されます。
上記では一般的なデータ分析手法をいくつか挙げましたが、実際には、時系列分析、因子分析、主成分分析など、他にも多くの手法があります。実際のデータ分析では、データをより深く理解し、問題を発見し、意思決定を行うために、特定の問題やデータの特性に応じて適切な方法を選択できます。
以上がデータ分析手法にはどのようなものがありますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Pandas は、さまざまな種類のデータ ファイルを簡単に読み取り、処理できる強力なデータ分析ツールです。その中でも、CSV ファイルは最も一般的でよく使用されるデータ ファイル形式の 1 つです。この記事では、Pandas を使用して CSV ファイルを読み取り、データ分析を実行する方法と、具体的なコード例を紹介します。 1. 必要なライブラリをインポートする まず、以下に示すように、Pandas ライブラリと必要になる可能性のあるその他の関連ライブラリをインポートする必要があります。 importpandasaspd 2. Pan を使用して CSV ファイルを読み取ります。

一般的なデータ分析手法: 1. 比較分析手法; 2. 構造分析手法; 3. クロス分析手法; 4. 傾向分析手法; 5. 因果分析手法; 6. 関連分析手法; 7. クラスター分析手法; 8 , 主成分分析法; 9. 散布分析法; 10. マトリックス分析法。詳細な紹介: 1. 比較分析手法: 2 つ以上のデータを比較分析して、相違点やパターンを見つける手法; 2. 構造分析手法: 全体の各部分と全体を比較分析する手法; 3. クロス分析手法、など。

React と Google BigQuery を使用して高速データ分析アプリケーションを構築する方法 はじめに: 今日の情報爆発の時代において、データ分析はさまざまな業界で不可欠なリンクとなっています。中でも、高速かつ効率的なデータ分析アプリケーションを構築することは、多くの企業や個人が追求する目標となっています。この記事では、React と Google BigQuery を使用して高速データ分析アプリケーションを構築する方法を紹介し、詳細なコード例を示します。 1. 概要 React はビルドするためのツールです

前回の「データ サイエンティストが 95% の時間使用する 11 個の基本チャート」に続き、今日はデータ サイエンティストが 95% の時間使用する 11 個の基本ディストリビューションをお届けします。これらの分布をマスターすることで、データの性質をより深く理解し、データ分析や意思決定の際により正確な推論や予測を行うことができます。 1. 正規分布 正規分布はガウス分布としても知られ、連続確率分布です。平均 (μ) を中心、標準偏差 (σ) を幅とした対称な釣鐘型の曲線を持ちます。正規分布は、統計学、確率論、工学などの多くの分野で重要な応用価値があります。

視覚化は、複雑なデータのパターンと関係を直感的でわかりやすい方法で伝えるための強力なツールです。これらはデータ分析において重要な役割を果たし、生データや従来の数値表現からは識別することが難しい洞察を提供します。視覚化は複雑なデータのパターンと関係を理解するために非常に重要です。データ内の情報を明らかにし、複雑なデータをより理解しやすく意味のあるものにするのに役立つ、最も重要で知っておくべき 11 のグラフを紹介します。 1. KSPlotKSPlot は分布の違いを評価するために使用されます。中心となるアイデアは、2 つの分布の累積分布関数 (CDF) 間の最大距離を測定することです。最大距離が小さいほど、同じ分布に属する可能性が高くなります。したがって、主に分布の差異を決定するための「システム」として解釈されます。

今日のインテリジェント社会では、機械学習とデータ分析は、人々が大量のデータをより深く理解し、活用できるようになる不可欠なツールです。こうした分野でもGo言語は注目を集めているプログラミング言語となっており、その高速性と効率性から多くのプログラマーに選ばれています。この記事では、機械学習やデータ分析に Go 言語を使用する方法を紹介します。 1. 機械学習のエコシステム Go 言語は、Python や R ほど豊富ではありません。しかし、より多くの人が Go 言語を使い始めるにつれて、一部の機械学習ライブラリとフレームワークが

ECharts と PHP インターフェイスを使用して統計グラフのデータ分析と予測を実装する方法。データ分析と予測はさまざまな分野で重要な役割を果たします。データの傾向とパターンを理解し、将来の意思決定の参考にすることができます。 ECharts は、PHP インターフェイスを使用してデータを動的にロードして処理できる、豊富で柔軟なグラフ コンポーネントを提供するオープン ソース データ視覚化ライブラリです。この記事では、EChartsとphpインターフェースに基づいた統計グラフデータの分析と予測の実装方法を紹介し、提供します

1. このレッスンでは、Excel の統合データ分析について説明します。ケースを通して完成させます。教材を開いて、セル E2 をクリックして数式を入力します。 2. 次に、セル E53 を選択して、以下のすべてのデータを計算します。 3. 次に、セル F2 をクリックし、計算する数式を入力します。同様に、下にドラッグすると、必要な値を計算できます。 4. セル G2 を選択し、「データ」タブをクリックし、「データ検証」をクリックして、選択して確認します。 5. 同じ方法を使用して、計算が必要な下のセルを自動的に入力してみましょう。 6. 次に、実際の賃金を計算し、セル H2 を選択して数式を入力します。 7. 次に、値のドロップダウン メニューをクリックして、他の数値をクリックします。