ホームページ > バックエンド開発 > Python チュートリアル > Pythonの使い方Tips20選、まとめてみるのもおすすめ!

Pythonの使い方Tips20選、まとめてみるのもおすすめ!

リリース: 2023-08-09 17:42:31
転載
772 人が閲覧しました


#1. 操作が混乱しやすい

このセクションでは、Python でのいくつかの紛らわしい操作を比較します。

#1.1 置換ありのランダム サンプリングと置換なしのランダム サンプリング

import random
random.choices(seq, k=1)  # 长度为k的list,有放回采样
random.sample(seq, k)     # 长度为k的list,无放回采样
ログイン後にコピー

1.2 ラムダ関数のパラメーター

func = lambda y: x + y          # x的值在函数运行时被绑定
func = lambda y, x=x: x + y     # x的值在函数定义时被绑定
ログイン後にコピー

1.3 コピーとディープコピー

import copy
y = copy.copy(x)      # 只复制最顶层
y = copy.deepcopy(x)  # 复制所有嵌套部分
ログイン後にコピー

変数エイリアスと組み合わせると、混乱が起こりやすくなります。

a = [1, 2, [3, 4]]

# Alias.
b_alias = a  
assert b_alias == a and b_alias is a

# Shallow copy.
b_shallow_copy = a[:]  
assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2]

# Deep copy.
import copy
b_deep_copy = copy.deepcopy(a)  
assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]
ログイン後にコピー

エイリアスの変更は元の変数に影響します。(浅い) コピーの要素は元のリストの要素のエイリアスですが、深いコピーは再帰的にコピーされます。コピーされた変更は、元の変数には影響しません。

2、常用工具

2.1 读写 CSV 文件

import csv
# 无header的读写
with open(name, 'rt', encoding='utf-8', newline='') as f:  # newline=''让Python不将换行统一处理
    for row in csv.reader(f):
        print(row[0], row[1])  # CSV读到的数据都是str类型
with open(name, mode='wt') as f:
    f_csv = csv.writer(f)
    f_csv.writerow(['symbol', 'change'])

# 有header的读写
with open(name, mode='rt', newline='') as f:
    for row in csv.DictReader(f):
        print(row['symbol'], row['change'])
with open(name, mode='wt') as f:
    header = ['symbol', 'change']
    f_csv = csv.DictWriter(f, header)
    f_csv.writeheader()
    f_csv.writerow({'symbol': xx, 'change': xx})
ログイン後にコピー

注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决

import sys
csv.field_size_limit(sys.maxsize)
ログイン後にコピー

csv 还可以读以 \t 分割的数据

f = csv.reader(f, delimiter='\t')
ログイン後にコピー

2.2 迭代器工具

itertools 中定义了很多迭代器工具,例如子序列工具:

import itertools
itertools.islice(iterable, start=None, stop, step=None)
# islice('ABCDEF', 2, None) -> C, D, E, F

itertools.filterfalse(predicate, iterable)         # 过滤掉predicate为False的元素
# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6

itertools.takewhile(predicate, iterable)           # 当predicate为False时停止迭代
# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4

itertools.dropwhile(predicate, iterable)           # 当predicate为False时开始迭代
# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1

itertools.compress(iterable, selectors)            # 根据selectors每个元素是True或False进行选择
# compress(&#39;ABCDEF&#39;, [1, 0, 1, 0, 1, 1]) -> A, C, E, F
ログイン後にコピー

序列排序:

sorted(iterable, key=None, reverse=False)

itertools.groupby(iterable, key=None)              # 按值分组,iterable需要先被排序
# groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6)

itertools.permutations(iterable, r=None)           # 排列,返回值是Tuple
# permutations(&#39;ABCD&#39;, 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC

itertools.combinations(iterable, r=None)           # 组合,返回值是Tuple
itertools.combinations_with_replacement(...)
# combinations(&#39;ABCD&#39;, 2) -> AB, AC, AD, BC, BD, CD
ログイン後にコピー

多个序列合并:

itertools.chain(*iterables)                        # 多个序列直接拼接
# chain(&#39;ABC&#39;, &#39;DEF&#39;) -> A, B, C, D, E, F

import heapq
heapq.merge(*iterables, key=None, reverse=False)   # 多个序列按顺序拼接
# merge(&#39;ABF&#39;, &#39;CDE&#39;) -> A, B, C, D, E, F

zip(*iterables)                                    # 当最短的序列耗尽时停止,结果只能被消耗一次
itertools.zip_longest(*iterables, fillvalue=None)  # 当最长的序列耗尽时停止,结果只能被消耗一次
ログイン後にコピー

2.3 计数器

计数器可以统计一个可迭代对象中每个元素出现的次数。

import collections
# 创建
collections.Counter(iterable)

# 频次
collections.Counter[key]                 # key出现频次
# 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素
collections.Counter.most_common(n=None)

# 插入/更新
collections.Counter.update(iterable)
counter1 + counter2; counter1 - counter2  # counter加减

# 检查两个字符串的组成元素是否相同
collections.Counter(list1) == collections.Counter(list2)
ログイン後にコピー

2.4 带默认值的 Dict

当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。

import collections
collections.defaultdict(type)  # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
ログイン後にコピー

2.5 有序 Dict

import collections
collections.OrderedDict(items=None)  # 迭代时保留原始插入顺序
ログイン後にコピー

3、高性能编程和调试

3.1 输出错误和警告信息

向标准错误输出信息

import sys
sys.stderr.write(&#39;&#39;)
ログイン後にコピー

输出警告信息

import warnings
warnings.warn(message, category=UserWarning)  
# category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
ログイン後にコピー

控制警告消息的输出

$ python -W all     # 输出所有警告,等同于设置warnings.simplefilter(&#39;always&#39;)
$ python -W ignore  # 忽略所有警告,等同于设置warnings.simplefilter(&#39;ignore&#39;)
$ python -W error   # 将所有警告转换为异常,等同于设置warnings.simplefilter(&#39;error&#39;)
ログイン後にコピー

3.2 代码中测试

有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:

# 在代码中的debug部分
if __debug__:
    pass
ログイン後にコピー

一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:

$ python -0 main.py
ログイン後にコピー

3.3 代码风格检查

使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误

pylint main.py
ログイン後にコピー

3.4 代码耗时

耗时测试

$ python -m cProfile main.py
ログイン後にコピー

测试某代码块耗时

# 代码块耗时定义
from contextlib import contextmanager
from time import perf_counter

@contextmanager
def timeblock(label):
    tic = perf_counter()
    try:
        yield
    finally:
        toc = perf_counter()
        print(&#39;%s : %s&#39; % (label, toc - tic))

# 代码块耗时测试
with timeblock(&#39;counting&#39;):
    pass
ログイン後にコピー

代码耗时优化的一些原则

  • コード全体ではなく、パフォーマンスのボトルネックが発生している場所の最適化に重点を置きます。
  • # グローバル変数の使用は避けてください。ローカル変数はグローバル変数よりも高速に検索され、関数内でグローバル変数を定義するコードの実行は通常 15% ~ 30% 高速になります。
  • #プロパティにアクセスするために . を使用しないでください。頻繁にアクセスされるクラスのメンバー変数 self.member をローカル変数に入れるには、from module import name を使用した方が高速です。
  • # 組み込みのデータ構造を使用してみてください。 str、list、set、dict などは C で実装されており、非常に高速に実行されます。
  • # 不要な中間変数の作成や copy.deepcopy() は避けてください。
  • a ':' b ':' c などの文字列連結では、大量の無駄な中間変数 ':',join([a 、b、c]) 効率ははるかに高くなります。さらに、文字列の連結が必要かどうかを考慮する必要があります。たとえば、print(':'.join([a, b, c])) は print(a, b, c, sep=':' より効率的ではありません) )。

以上がPythonの使い方Tips20選、まとめてみるのもおすすめ!の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

関連ラベル:
ソース:Python当打之年
このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
最新の問題
人気のチュートリアル
詳細>
最新のダウンロード
詳細>
ウェブエフェクト
公式サイト
サイト素材
フロントエンドテンプレート