Open LLM リストが再び更新され、Llama 2 よりも強力な「カモノハシ」が登場しました。
OpenAI の GPT-3.5 や GPT-4 などのクローズド モデルの優位性に挑戦するために、LLaMa、Falcon などを含む一連のオープン ソース モデルが登場しています。最近、Meta AI は、オープンソース分野で最も強力なモデルとして知られる LLaMa-2 を発表し、多くの研究者もこれに基づいて独自のモデルを構築しています。たとえば、StabilityAI は、Orca スタイルのデータ セットを使用して Llama2 70B モデルを微調整し、StableBeluga2 を開発しました。これは、Huggingface の Open LLM ランキングでも良い結果を達成しました
最新の Open The LLM リストランキングが変わり、Platypus (カモノハシ) モデルがリストのトップに浮上しました
作者はボストン大学出身で、PEFT を使用していますLoRA と、Llama 2 に基づいて Platypus を微調整および最適化したデータセット Open-Platypus です。
著者は、論文で Platypus を詳しく紹介しました
この論文は、https://arxiv.org/abs/2308.07317
この記事の主な貢献は次のとおりです:
- #Open-Platypus は、パブリック テキスト データセットの精選されたサブセットで構成される小規模データセットです。このデータセットは、LLM の STEM とロジックの知識の向上に重点を置いた 11 のオープンソース データセットで構成されています。これは主に人間によって設計された質問で構成されており、LLM によって生成された質問は 10% のみです。 Open-Platypus の主な利点は、そのスケールと品質であり、これにより、微調整にかかる時間とコストが低く、短時間で非常に高いパフォーマンスが可能になります。具体的には、25,000 個の問題を使用して 13B モデルをトレーニングする場合、単一の A100 GPU でわずか 5 時間かかります。
- 類似性の排除プロセスについて説明し、データセットのサイズを削減し、データの冗長性を削減します。
- オープンな LLM トレーニング セットが重要な LLM テスト セットに含まれるデータで汚染されるという常に存在する現象が詳細に分析されており、この隠れた危険を回避するための著者のトレーニング データ フィルタリング プロセスは次のとおりです。紹介された。
- 特殊な微調整された LoRA モジュールを選択して結合するプロセスについて説明します。
Open-Platypus データセット
著者は現在、Hugging Face に関する Open-Platypus データセットをリリースしています
##コンタミネーション問題
ベンチマークの問題がトレーニング セットに漏れることを避けるため、このアプローチはでは、まず、結果が単にメモリによって偏らないようにするために、この問題を回避することを検討します。著者らは正確性を追求する一方、質問はさまざまな方法で尋ねられ、一般的な専門知識の影響を受けるため、「もう一度言ってください」の質問を柔軟に採点する必要があることも認識しています。潜在的な漏れの問題を管理するために、著者らは、Open-Platypus のベンチマーク問題のコサイン埋め込みと 80% 以上の類似性を持つ問題を手動でフィルタリングするためのヒューリスティックを慎重に設計しました。彼らは、潜在的な漏洩問題を 3 つのカテゴリに分類しました: (1) もう一度質問してください、(2) 言い換えてください: この領域はグレートーンの問題 (3) 類似しているが同一ではない問題を示しています。用心するために、これらの問題はすべてトレーニング セットから除外されました
#もう一度言ってください
#このテキストは、単語のわずかな変更または再配置のみを除いて、テスト問題セットの内容をほぼ正確に再現しています。上の表の漏れの数に基づいて、著者らはこれが汚染に該当する唯一のカテゴリであると考えています。以下に具体的な例を示します。
再説明:
この領域には灰色の色合いがあります
# 次の問題は再記述と呼ばれます。
この領域は灰色の色合いを帯びており、厳密には常識ではない問題が含まれています。著者らは、これらの問題に関する最終的な判断はオープンソース コミュニティに委ねているものの、これらの問題には多くの場合専門知識が必要であると主張しています。このタイプの質問には、手順はまったく同じだが回答が同義である質問が含まれることに注意してください: #類似しているが同一ではありません これらの質問は非常に類似していますが、質問間の微妙な違いにより、回答には大きな違いがあります。 データセットを改善した後、著者は 2 つのことに焦点を当てます。手法: 低ランク近似 (LoRA) トレーニングとパラメーター効率的微調整 (PEFT) ライブラリ。完全な微調整とは異なり、LoRA は事前トレーニングされたモデルの重みを保持し、変換層での統合にランク分解行列を使用するため、トレーニング可能なパラメーターが減り、トレーニング時間とコストが節約されます。当初、微調整は主に v_proj、q_proj、k_proj、o_proj などの注目モジュールに焦点を当てていました。その後、He らの提案に従って、gate_proj、down_proj、up_proj モジュールに拡張されました。トレーニング可能なパラメーターがパラメーター全体の 0.1% 未満でない限り、これらのモジュールはすべてより良い結果を示します。著者はこの方法を 13B モデルと 70B モデルの両方に採用し、その結果、学習可能なパラメータはそれぞれ 0.27% と 0.2% でした。唯一の違いは、これらのモデルの初期学習率です 8 月 10 日の Hugging Face Open LLM ランキング データによると、 2023 年、著者は Platypus を他の SOTA モデルと比較し、Platypus2-70Binstruct バリアントが良好なパフォーマンスを示し、平均スコア 73.13 で 1 位にランクされたことを発見しました。安定した Platypus2-13B モデルは、130 億のパラメーター モデルの中で平均スコア 63.96 で際立っており、注目に値します Platypus は、LLaMa-2 の微調整された拡張機能として、基本モデルの制約の多くを保持し、ターゲットを絞ったトレーニングを通じて特定の課題を導入します。LLaMa-2 の静的知識ベースを共有します。時代遅れです。さらに、特にプロンプトが不明瞭な場合、不正確または不適切なコンテンツが生成されるリスクがあります。Platypus は STEM および英語ロジックで強化されていますが、他の言語での熟練度は信頼できず、一貫性がない可能性があります。偏った、または一貫性のない有害なコンテンツを生成します。著者は、これらの問題を最小限に抑えるための努力を認めていますが、特に英語以外の言語において継続的な課題があることを認めています。 Platypus の悪用の可能性が懸念されています。問題があるため、開発者は展開前にアプリケーションのセキュリティ テストを実施する必要があります。 Platypus にはプライマリ ドメイン以外にいくつかの制限がある場合があるため、ユーザーは慎重に作業を進め、最適なパフォーマンスを得るために追加の微調整を検討する必要があります。ユーザーは、Platypus のトレーニング データが他のベンチマーク テスト セットと重複しないようにする必要があります。著者らはデータ汚染の問題について非常に慎重であり、汚染されたデータセットでトレーニングされたモデルとモデルをマージすることを避けています。クリーンアップされた学習データに汚染がないことは確認されていますが、いくつかの問題が見落とされている可能性も否定できません。これらの制限の詳細については、この文書の「制限」セクション微調整とマージ
結果
制限事項
以上がOpen LLM リストが再び更新され、Llama 2 よりも強力な「カモノハシ」が登場しました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Char Arrayは文字シーケンスをC言語で保存し、char array_name [size]として宣言されます。アクセス要素はサブスクリプト演算子に渡され、要素は文字列のエンドポイントを表すnullターミネーター「\ 0」で終了します。 C言語は、strlen()、strcpy()、strcat()、strcmp()など、さまざまな文字列操作関数を提供します。

C言語に組み込みの合計機能はないため、自分で書く必要があります。合計は、配列を通過して要素を蓄積することで達成できます。ループバージョン:合計は、ループとアレイの長さを使用して計算されます。ポインターバージョン:ポインターを使用してアレイ要素を指し示し、効率的な合計が自己概要ポインターを通じて達成されます。アレイバージョンを動的に割り当てます:[アレイ]を動的に割り当ててメモリを自分で管理し、メモリの漏れを防ぐために割り当てられたメモリが解放されます。

Cスイッチステートメントでデフォルトに起因するエラーを回避するための戦略:定数の代わりに列挙を使用し、ケースステートメントの値を列挙の有効なメンバーに制限します。最後のケースステートメントでフォールスルーを使用して、プログラムが以下のコードを引き続き実行できるようにします。フォールスルーなしのスイッチステートメントの場合、エラー処理のためのデフォルトステートメントを常に追加するか、デフォルトの動作を提供します。

デフォルトステートメントは、変数値がケースステートメントと一致しない場合にコードブロックが実行されることを保証するデフォルトの処理パスを提供するため、スイッチケースステートメントで重要です。これにより、予期しない動作やエラーが防止され、コードの堅牢性が向上します。

論理非操作者(!)には、括弧の横に優先順位があります。つまり、表現では、他のほとんどの演算子に先行します。優先順位を理解するには、暗記の暗記だけでなく、さらに重要なことに、複雑な表現での検出不可能なエラーを避けるために、その背後にある論理と潜在的な落とし穴を理解する必要があります。ブラケットを追加すると、表現の意図を明確にし、コードの明確さと保守性を向上させ、予期しない動作を防ぐことができます。

Externキーワードは、外部変数と関数を宣言するためにC言語で使用されます。これは、変数または関数が他の場所で定義されていることをコンパイラに伝え、リンク段階で定義を探すようコンパイラに指示します。 Externが外部変数を宣言すると、メモリスペースは割り当てられず、その定義は他のファイルで実行されます。 Externが外部関数を宣言する場合、機能の実装は含まれておらず、その実装も他のファイルで実行されます。外部キーワードの使用は通常、ヘッダーファイルと組み合わされます。これは、コード管理を助長し、繰り返しの宣言を回避します。 Externがマルチファイルのコンピレーションと命令の対立の取り扱いを理解することは非常に重要であり、リンクプロセスで重要な役割を果たしています。

合計キーワードはC言語では存在せず、通常の識別子であり、変数または関数名として使用できます。しかし、誤解を避けるために、数学関連コードの識別子に使用しないようにすることをお勧めします。 array_sumやcalculate_sumなどのより記述的な名前を使用して、コードの読みやすさを向上させることができます。
