C++ の信号処理テクニック
C は、強力で柔軟性があり、さまざまなアプリケーション開発に適した人気のあるプログラミング言語です。 C でアプリケーションを開発する場合、さまざまな信号を処理する必要があることがよくあります。この記事では、開発者がこの側面をよりよく習得できるように、C での信号処理テクニックを紹介します。
1. 信号処理の基本概念
信号は、アプリケーションに内部イベントまたは外部イベントを通知するために使用されるソフトウェア割り込みです。特定のイベントが発生すると、オペレーティング システムはアプリケーションに信号を送信し、アプリケーションはそれを無視するか応答するかを選択できます。 C では、シグナル処理関数を通じてシグナルを処理できます。アプリケーションはシグナルを受信すると、受信したシグナルに対応するシグナル処理関数を呼び出します。
2. 信号処理関数の登録
C 言語の信号処理関数は、特定の信号を受信したときに呼び出せるようにアプリケーションに登録する必要があります。登録はC標準ライブラリの「signal」関数を使用して行うことができます。以下は例です。
#include <signal.h> #include <iostream> void signal_handler(int signum){ std::cout << "Received signal: " << signum << std::endl; } int main() { signal(SIGINT, signal_handler); while (true) {} return 0; }
上の例では、シグナルを受信したときにシグナル番号を出力する「signal_handler」という名前の関数を定義しました。 「signal」関数を使用して、SIGINT シグナルを「signal_handler」関数に関連付けます。 「while (true)」はシグナルの受信を待つために使用します。
3. 信号の分類
C では、信号は標準信号とリアルタイム信号の 2 種類に分類できます。
標準信号は、発生したイベントをアプリケーションに通知するためにオペレーティング システムによって送信されます。 C の標準信号には、SIGABRT、SIGALRM、SIGFPE、SIGHUP、SIGILL、SIGINT、SIGKILL、SIGPIPE、SIGQUIT、SIGSEGV、SIGTERM、SIGUSR1/SIGUSR2 があります。これらの信号は、信号処理機能を通じて処理できます。
リアルタイム シグナルは、他のアプリケーションまたはスレッドにイベントを通知するためにアプリケーションによって送信されます。 C のリアルタイム信号には、SIGRTMIN/SIGRTMAX が含まれます。標準信号とは異なり、リアルタイム信号は信頼性があり、決定的です。
4. シグナル利用スキル
- シグナル応答の優先順位
C におけるシグナル応答は、優先順位に従って決定されます。信号ごとに優先順位が異なるため、信号処理機能の優先順位を変更することで信号の応答を制御できます。優先度は「sa_flags」フィールドを使用して識別され、優先順位は SA_SHIRQ、SA_RESTART、SA_NODEFER、SA_ONSTACK、SA_NOCLDSTOP、SA_NOCLDWAIT、SA_SIGINFO、および SA_RESETHAND です。
- シグナル ブロック
アプリケーションがシグナルを受信すると、オペレーティング システムはそのシグナルを保留中としてマークします。この時点でアプリケーションが同じ信号を再度受信すると、オペレーティング システムはその信号を破棄し、信号処理機能はトリガーされません。この状況は信号ブロッキングと呼ばれます。 C では、以下に示すように、「sigprocmask」関数を使用してシグナルをブロックできます。
#include <signal.h> int main() { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, SIGINT); sigprocmask(SIG_BLOCK, &mask, NULL); while (true) {} return 0; }
上の例では、「sigprocmask」関数を使用して SIGINT シグナルをブロックします。 「while (true)」ステートメントを実行すると、信号はブロックされ、信号処理関数はトリガーされません。
- シグナル キャプチャ
C でのシグナル キャプチャは、シグナル プロセッサをインストールすることで実現できます。 「sigaction」関数を使用すると、シグナル ハンドラーをインストールし、特定のシグナル ハンドラーを特定のシグナルにバインドできます。以下に例を示します。
#include <signal.h> #include <iostream> void signal_handler(int signum){ std::cout << "Received signal: " << signum << std::endl; } int main() { struct sigaction act; sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = signal_handler; sigaction(SIGINT, &act, NULL); while (true) {} return 0; }
上の例では、「sigaction」関数を使用して、SIGINT シグナルを「signal_handler」関数にバインドします。 SIGINT シグナルを受信すると、signal_handler 関数が呼び出され、シグナル番号が出力されます。
4. 概要
この記事では、信号処理関数の登録、信号分類、信号応答の優先順位、信号ブロック、信号キャプチャなど、C での信号処理技術を紹介します。これらの手法を理解することは、開発者が信号処理の基本概念と原理をよりよく理解し、アプリケーションの信頼性と安定性を向上させるのに役立ちます。
以上がC++ の信号処理テクニックの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C++ でストラテジ パターンを実装する手順は次のとおりです。ストラテジ インターフェイスを定義し、実行する必要があるメソッドを宣言します。特定の戦略クラスを作成し、それぞれインターフェイスを実装し、さまざまなアルゴリズムを提供します。コンテキスト クラスを使用して、具体的な戦略クラスへの参照を保持し、それを通じて操作を実行します。

ネストされた例外処理は、ネストされた try-catch ブロックを通じて C++ に実装され、例外ハンドラー内で新しい例外を発生させることができます。ネストされた try-catch ステップは次のとおりです。 1. 外側の try-catch ブロックは、内側の例外ハンドラーによってスローされた例外を含むすべての例外を処理します。 2. 内部の try-catch ブロックは特定のタイプの例外を処理し、スコープ外の例外が発生した場合、制御は外部例外ハンドラーに渡されます。

C++ テンプレートの継承により、テンプレート派生クラスが基本クラス テンプレートのコードと機能を再利用できるようになり、コア ロジックは同じだが特定の動作が異なるクラスを作成するのに適しています。テンプレート継承の構文は次のとおりです: templateclassDerived:publicBase{}。例: templateclassBase{};templateclassDerived:publicBase{};。実際のケース: 派生クラス Derived を作成し、基本クラス Base のカウント関数を継承し、現在のカウントを出力する printCount メソッドを追加しました。

Cでは、文字列でCharタイプが使用されます。1。単一の文字を保存します。 2。配列を使用して文字列を表し、ヌルターミネーターで終了します。 3。文字列操作関数を介して動作します。 4.キーボードから文字列を読み取りまたは出力します。

エラーの原因とソリューションPECLを使用してDocker環境に拡張機能をインストールする場合、Docker環境を使用するときに、いくつかの頭痛に遭遇します...

マルチスレッド C++ では、例外処理は std::promise および std::future メカニズムを通じて実装されます。promise オブジェクトを使用して、例外をスローするスレッドで例外を記録します。 future オブジェクトを使用して、例外を受信するスレッドで例外を確認します。実際のケースでは、Promise と Future を使用して、さまざまなスレッドで例外をキャッチして処理する方法を示します。

言語のマルチスレッドは、プログラムの効率を大幅に改善できます。 C言語でマルチスレッドを実装する4つの主な方法があります。独立したプロセスを作成します。独立して実行される複数のプロセスを作成します。各プロセスには独自のメモリスペースがあります。擬似マルチスレッド:同じメモリ空間を共有して交互に実行するプロセスで複数の実行ストリームを作成します。マルチスレッドライブラリ:pthreadsなどのマルチスレッドライブラリを使用して、スレッドを作成および管理し、リッチスレッド操作機能を提供します。 Coroutine:タスクを小さなサブタスクに分割し、順番に実行する軽量のマルチスレッド実装。

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。
