ホームページ バックエンド開発 Python チュートリアル Python を使用して画像に勾配フィルタリングを実行する方法

Python を使用して画像に勾配フィルタリングを実行する方法

Aug 22, 2023 am 08:17 AM
python 写真 勾配フィルタリング

Python を使用して画像に勾配フィルタリングを実行する方法

Python を使用して画像に勾配フィルターを実行する方法

勾配フィルターはデジタル画像処理で一般的に使用される手法で、画像内のエッジと輪郭情報を検出するために使用されます。 。 Python では、OpenCV ライブラリを使用して勾配フィルタリングを実装できます。この記事では、Python を使用して画像にグラデーション フィルター処理を実行する方法を紹介し、参考用のコード例を添付します。

勾配フィルタリングの原理は、ピクセル点の周囲のピクセル値の差を計算することによってエッジの位置を決定することです。一般に、画像内のエッジは、画像のグレー値がより急激に変化する領域として表されます。したがって、勾配フィルター処理では、画像のグレースケールの一次微分または二次微分を計算することでエッジを見つけることができます。

以下は、Python および OpenCV ライブラリを使用してグラデーション フィルタリングを実装するコード例です。

import cv2
import numpy as np

# 读取图片
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

# 使用Sobel算子计算图像梯度
gradient_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
gradient_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)

# 计算梯度幅值
gradient_magnitude = np.sqrt(np.square(gradient_x) + np.square(gradient_y))

# 将梯度幅值映射到0-255的灰度空间
gradient_magnitude = cv2.normalize(gradient_magnitude, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)

# 显示原图和梯度图像
cv2.imshow('original', image)
cv2.imshow('gradient', gradient_magnitude)
cv2.waitKey(0)
cv2.destroyAllWindows()
ログイン後にコピー

まず、cv2.imread() 関数を使用してグレースケールを読み取ります。画像。ここで、画像のパスと読み取りモードを指定する必要があります。 cv2.IMREAD_GRAYSCALLE は、画像をグレースケール モードで読み取ることを意味します。

次に、cv2.Sobel() 関数を使用して画像の勾配を計算します。ここでのパラメーターには、入力画像、勾配が計算される順序 (x 方向または y 方向)、導関数の次数、および Sobel オペレーターのサイズが含まれます。 Sobel オペレーターは、画像のグレー値に対して 1 次微分を実行して勾配を計算する、一般的に使用されるエッジ検出オペレーターです。

次に、x 方向と y 方向の勾配に対して平方根演算を実行することで勾配の振幅を取得できます。この操作では、NumPy ライブラリによって提供される関数 np.square() および np.sqrt() を使用します。

最後に、勾配振幅を 0 ~ 255 のグレースケール空間にマッピングし、正規化に cv2.normalize() 関数を使用します。

最後に、cv2.imshow() 関数を使用して元の画像とグラデーション画像を表示し、cv2.waitKey()cv2 を使用します。 .destroyAllWindows( )関数はユーザーの操作を待ってウィンドウを閉じます。

上記のコードを使用すると、入力画像に対してグラデーション フィルターを実行し、結果を表示できます。他の勾配フィルター アルゴリズムを実装する場合は、より柔軟な畳み込み演算を提供する cv2.filter2D() 関数を使用してみてください。

グラデーション フィルターはデジタル画像処理で一般的に使用される手法で、画像内のエッジや輪郭の情報を抽出するのに役立ちます。この記事の内容がお役に立ち、画像処理の分野をさらに学び探求するきっかけになれば幸いです。

以上がPython を使用して画像に勾配フィルタリングを実行する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:さまざまなパラダイムが説明されています PHPおよびPython:さまざまなパラダイムが説明されています Apr 18, 2025 am 12:26 AM

PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

Python vs. JavaScript:学習曲線と使いやすさ Python vs. JavaScript:学習曲線と使いやすさ Apr 16, 2025 am 12:12 AM

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PHPとPythonの選択:ガイド PHPとPythonの選択:ガイド Apr 18, 2025 am 12:24 AM

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Windows 8でコードを実行できます Windows 8でコードを実行できます Apr 15, 2025 pm 07:24 PM

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

Visual StudioコードはPythonで使用できますか Visual StudioコードはPythonで使用できますか Apr 15, 2025 pm 08:18 PM

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

PHPとPython:彼らの歴史を深く掘り下げます PHPとPython:彼らの歴史を深く掘り下げます Apr 18, 2025 am 12:25 AM

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

ターミナルVSCODEでプログラムを実行する方法 ターミナルVSCODEでプログラムを実行する方法 Apr 15, 2025 pm 06:42 PM

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

VSCODE拡張機能は悪意がありますか? VSCODE拡張機能は悪意がありますか? Apr 15, 2025 pm 07:57 PM

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

See all articles