自動機械学習の Python に相当するコードの説明
###############導入###
機械学習は急速に発展している分野であり、新しいテクノロジーやアルゴリズムが常に登場しています。ただし、機械学習モデルの作成と強化は、高度な専門知識を必要とする、時間のかかる困難な作業になる可能性があります。自動機械学習 (autoML とも呼ばれます) は、特徴量エンジニアリング、ハイパーパラメーター調整、モデル選択などの面倒なタスクの一部を自動化することで、機械学習モデルの作成と最適化のプロセスを簡素化することを目的としています。
node-red でのエラーの処理方法
自動スクラーン
効率的なオープンソース ソフトウェア プログラム Auto-sklearn を使用して、機械学習モデルの作成と継続的な改善を自動化します。ベイズ最適化とメタ学習を使用して、特定のデータセットの理想的なモデルとハイパーパラメータを自動的に見つけます。メタ学習自体は、よく知られた機械学習プログラム scikit-learn に基づいています。
Autosklearn が分類および回帰問題のために作成したアプリケーションには、自然言語処理、画像分類、時系列予測などはほんのわずかしかありません。
ライブラリは、特徴量エンジニアリング、モデル選択、データ準備プロセスなど、潜在的な機械学習プロセスのコレクションを検索することによって動作します。ベイジアン最適化を使用してこの空間を効率的に検索し、メタ学習を通じて以前のテストから検索効率を継続的に向上させます。
さらに、Auto-sklearn は、動的統合選択、自動モデル統合、アクティブ学習などの一連の強力な機能も提供します。さらに、モデルの開発、テスト、トレーニングのための使いやすい API も提供します。
AutoML コード
Auto-sklearn を使用して、AutoML コードをさらに詳しく調べてみましょう。 scikit-learn の Digits データセット (手書きの数字のデータセット) を使用します。数字の写真から数字を予測することが目標です。コードは次のとおりです -
プログラム
の中国語訳は次のとおりです:プログラム
リーリー ###出力### リーリーコードの説明
このプログラムは、自動機械学習 (AutoML) を使用して、Auto-sklearn モジュールの使用を含め、MNIST データセットから手書きの数字を分類します。コードの概要は次のとおりです -
autosklearn.classification モジュールから AutoSklearnClassifier クラスをインポートします。このクラスには、使用される AutoML 分類モデルが含まれています。autosklearn.classification モジュールをインポートします。
sklearn.datasets からload_digits 関数をインポート: これにより、sklearn.datasets パッケージから MNIST データセットのload_digits 関数がインポートされます。
sklearnからモデルを選択してください。 MNIST データ セットは、ここでインポートされる sklearn.model 選択モジュールのトレーニング テスト分割関数を使用して、トレーニング セットとテスト セットに分割されます。
MNIST データセットがロードされ、入力特徴が X に保存され、対応するラベルが y に保存されます。 X, y =load_digits(return_X_y=True): これにより、MNIST データセットがロードされます。
XX トレーニング セット、セット、テスト セット、再現性を確保するためにランダム シードを 1 に設定
Automl は autosklearn.classification と同等です。 AutoSklearnClassifier (実行ごとの制限時間 = 30、このタスクの残り時間 = 180): MNIST データセットでトレーニングされた AutoML モデルを AutoSklearnClassifier クラスのインスタンスに形成します。実行あたりの時間制限は、個々のモデルが実行できる最大時間 (秒単位) を表し、このタスクの残り時間は AutoML プロセスが実行できる最大時間 (秒単位) を表します。 -
-
まず、pandas、numpy、sklearn、tpot などの必要なライブラリをコードにインポートします。 Sklearn はデータの前処理、モデルの選択、評価などの機械学習タスクに使用され、Pandas はデータ操作に使用され、NumPy は数値計算に使用されます。 AutoML アルゴリズムを実装する主なライブラリは TPOT です。
次に、pandas の read_csv 関数を使用してデータセットを読み込み、入力フィーチャと出力ラベルを異なる変数に個別に保存します。 「y」変数は出力のラベルを保持し、「X」変数は入力の特徴を格納します。
データを適合させて機械学習モデルを生成するには、コードはまずデータセットを読み込み、次に TPOTRegressor クラスのインスタンスを作成します。 TPOTSRegressor クラスは TPOTBase クラスのサブクラスであり、遺伝的アルゴリズムを使用して機能を選択し、ハイパーパラメーターを調整します。 TPOTRegressor クラスは回帰問題を処理し、TPOTClassifier クラスは分類問題を処理します。
Sklearn のトレーニング-テスト-分割メソッドを使用して、データ セットをトレーニング セットとテスト セットに分割します。機械学習では、データを 2 つのセット (モデルをフィッティングするためのトレーニング セットとモデルのパフォーマンスを評価するためのテスト セット) に分割するのが一般的です。
データが分割されると、TPOTRegressor インスタンスの fit メソッドが呼び出され、トレーニング データに基づいてモデルが調整されます。 Fit テクノロジーでは、遺伝的アルゴリズムを使用して、特定のデータに対する特徴とハイパーパラメーターの最適なサブセットを見つけます。最適なモデルが返されます。
コードは次に、スコアリング方法を使用して、テスト セットでのモデルのパフォーマンスを評価し、モデルの精度を決定します。精度スコアはモデルがデータにどの程度適合しているかを示し、値が 1 に近いほど適合度が高いことを示します。
次に、エクスポート関数を使用して、最良のモデルがテスト セットの精度スコアとともに Python ファイルにエクスポートされます。
###結論は###要約すると、Auto-sklearn は、機械学習モデルの作成と改善のプロセスを簡素化する強力なライブラリです。特定のデータセットに最適なモデルとハイパーパラメーターを自動的に見つけることで、時間と労力を節約します。このチュートリアルでは、Python で Auto-sklearn を使用する方法について説明します。これには、Auto-sklearn のインストール、データのインポート、データの準備、モデルの作成とトレーニング、モデルのパフォーマンスの評価に関するガイダンスが含まれます。初心者でも Auto-sklearn を使用すると、強力な機械学習モデルを迅速かつ簡単に作成できます。
以上が自動機械学習の Python に相当するコードの説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所
