C++ を使用して効率的な画像再構成と画像圧縮を行うにはどうすればよいですか?
C を使用して効率的な画像再構成と画像圧縮を行うにはどうすればよいですか?
画像は私たちの日常生活において非常に一般的な媒体であり、画像処理は多くのアプリケーションにとって重要です。画像処理において、画像再構成と画像圧縮は 2 つの非常に重要な関係です。この記事では、C を使用して効率的に画像再構成と画像圧縮を行う方法を紹介します。
- 画像再構成
画像再構成とは、ぼやけすぎたり、損傷した画像を元の鮮明な状態に復元することを指します。一般的に使用される画像再構成方法の 1 つは、画像復元に畳み込みニューラル ネットワーク (CNN) を使用することです。以下は、OpenCV と Dlib ライブラリを使用して画像再構成を実装するサンプル コードです。
#include <iostream> #include <opencv2/opencv.hpp> #include <dlib/dnn.h> // 定义卷积神经网络模型 typedef dlib::loss_multiclass_log<dlib::fc<2, dlib::relu<dlib::fc<84, dlib::relu<dlib::fc<120, dlib::relu<dlib::fc<400, dlib::relu<dlib::fc<800, dlib::relu<dlib::fc<512, dlib::input<dlib::matrix<unsigned char>> >>>>>>>>>>>> CNNModel; int main() { // 加载图像 cv::Mat image = cv::imread("input.png", cv::IMREAD_GRAYSCALE); // 将图像转换为dlib矩阵 dlib::matrix<unsigned char> dlib_image(image.rows, image.cols); dlib::assign_image(dlib_image, dlib::cv_image<unsigned char>(image)); // 载入模型 CNNModel net; dlib::deserialize("model.dat") >> net; // 图像恢复 dlib::matrix<float> output = net(dlib_image); // 转换回OpenCV的Mat类型图像 cv::Mat restored_image(dlib_image.nr(), dlib_image.nc(), CV_8UC1); dlib::toMat(restored_image) = restored_image; // 保存图像 cv::imwrite("restored_image.png", restored_image); return 0; }
上記のコードでは、まず OpenCV を使用してグレースケール画像を読み込みます。次に、画像を dlib 行列タイプに変換し、事前トレーニングされた畳み込みニューラル ネットワーク モデルをロードしました。最後に、このモデルを使用してイメージを復元し、復元されたイメージを保存します。
- 画像圧縮
画像圧縮とは、ファイル サイズを削減するために、画像を表現するために使用するストレージ容量を減らすことを指します。一般的に使用される画像圧縮方法の 1 つは、離散コサイン変換 (DCT) と量子化を使用することです。以下は、OpenCV および Zlib ライブラリを使用した画像圧縮のサンプル コードです。
#include <iostream> #include <opencv2/opencv.hpp> #include <zlib.h> int main() { // 加载图像 cv::Mat image = cv::imread("input.png", cv::IMREAD_GRAYSCALE); // 图像压缩 cv::Mat compressed_image; std::vector<unsigned char> buffer; cv::imencode(".png", image, buffer); // 使用zlib进行压缩 uLong uncompr_len = buffer.size(); // 压缩前的大小 uLong compr_len = compressBound(uncompr_len); // 压缩后的大小 Bytef* compr = new Bytef[compr_len]; compress(compr, &compr_len, buffer.data(), uncompr_len); // 保存压缩后的图像 std::ofstream outfile("compressed_image.dat", std::ofstream::binary); outfile.write(reinterpret_cast<const char*>(compr), compr_len); outfile.close(); // 验证解压缩是否正确 Bytef* uncompr = new Bytef[uncompr_len]; uncompress(uncompr, &uncompr_len, compr, compr_len); // 转换回OpenCV的Mat类型图像 cv::Mat restored_image = cv::imdecode(buffer, cv::IMREAD_GRAYSCALE); // 保存解压缩后的图像 cv::imwrite("restored_image.png", restored_image); return 0; }
上記のコードでは、まず OpenCV を使用してグレースケール画像をロードし、関数 imencode を使用して画像を PNG 形式にエンコードしました。 。次に、zlib ライブラリを使用して圧縮し、圧縮された画像データをファイルに保存します。最後に、zlib ライブラリを使用して、解凍されたイメージを解凍して保存します。
概要:
この記事では、C を使用して効率的な画像再構成と画像圧縮を行う方法を紹介します。画像復元に畳み込みニューラル ネットワークを使用し、画像圧縮に離散コサイン変換と量子化を使用することで、画像処理でより良い結果を達成できます。画像の再構成であっても画像圧縮であっても、C は非常に強力で効率的なツールであり、多くの複雑な画像処理タスクを完了するのに役立ちます。
以上がC++ を使用して効率的な画像再構成と画像圧縮を行うにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C++ でストラテジ パターンを実装する手順は次のとおりです。ストラテジ インターフェイスを定義し、実行する必要があるメソッドを宣言します。特定の戦略クラスを作成し、それぞれインターフェイスを実装し、さまざまなアルゴリズムを提供します。コンテキスト クラスを使用して、具体的な戦略クラスへの参照を保持し、それを通じて操作を実行します。

Cでは、文字列でCharタイプが使用されます。1。単一の文字を保存します。 2。配列を使用して文字列を表し、ヌルターミネーターで終了します。 3。文字列操作関数を介して動作します。 4.キーボードから文字列を読み取りまたは出力します。

エラーの原因とソリューションPECLを使用してDocker環境に拡張機能をインストールする場合、Docker環境を使用するときに、いくつかの頭痛に遭遇します...

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。

言語のマルチスレッドは、プログラムの効率を大幅に改善できます。 C言語でマルチスレッドを実装する4つの主な方法があります。独立したプロセスを作成します。独立して実行される複数のプロセスを作成します。各プロセスには独自のメモリスペースがあります。擬似マルチスレッド:同じメモリ空間を共有して交互に実行するプロセスで複数の実行ストリームを作成します。マルチスレッドライブラリ:pthreadsなどのマルチスレッドライブラリを使用して、スレッドを作成および管理し、リッチスレッド操作機能を提供します。 Coroutine:タスクを小さなサブタスクに分割し、順番に実行する軽量のマルチスレッド実装。

std :: uniqueは、コンテナ内の隣接する複製要素を削除し、最後まで動かし、最初の複製要素を指すイテレーターを返します。 STD ::距離は、2つの反復器間の距離、つまり、指す要素の数を計算します。これらの2つの機能は、コードを最適化して効率を改善するのに役立ちますが、隣接する複製要素をstd ::のみ取引するというような、注意すべき落とし穴もあります。 STD ::非ランダムアクセスイテレーターを扱う場合、距離は効率が低くなります。これらの機能とベストプラクティスを習得することにより、これら2つの機能の力を完全に活用できます。

CのRelease_Semaphore関数は、取得したセマフォをリリースするために使用され、他のスレッドまたはプロセスが共有リソースにアクセスできるようにします。セマフォのカウントを1増加し、ブロッキングスレッドが実行を継続できるようにします。

C言語では、Snake命名法はコーディングスタイルの慣習であり、アンダースコアを使用して複数の単語を接続して可変名または関数名を形成して読みやすくします。編集と操作、長い命名、IDEサポートの問題、および歴史的な荷物を考慮する必要がありますが、それは影響しませんが。
