C++ ビッグ データ開発でデータ キャッシュ戦略を最適化するにはどうすればよいですか?
C ビッグ データ開発でデータ キャッシュ戦略を最適化する方法?
ビッグ データ開発では、データ キャッシュが一般的に使用される最適化方法です。頻繁にアクセスされるデータをメモリにロードすることにより、プログラムのパフォーマンスが大幅に向上します。この記事では、C でデータ キャッシュ戦略を最適化する方法と、関連するコード例を紹介します。
1. LRU キャッシュ アルゴリズムを使用する
LRU (最も最近使用されていないもの) は、一般的に使用されるキャッシュ アルゴリズムです。その原理は、最も最近使用されたデータをキャッシュの前面に配置し、最も使用頻度の低いデータをキャッシュの背面に配置することです。キャッシュがいっぱいになったときに、新しく追加されたデータがキャッシュにない場合は、最も使用頻度の低いデータが削除され、新しいデータがキャッシュの先頭に配置されます。 STL で list と unowned_map を使用して、LRU キャッシュ アルゴリズムを実装できます。具体的な実装は次のとおりです。
#include <list> #include <unordered_map> template <typename Key, typename Value> class LRUCache { public: LRUCache(int capacity) : m_capacity(capacity) {} Value get(const Key& key) { auto it = m_map.find(key); if (it == m_map.end()) { return Value(); } m_list.splice(m_list.begin(), m_list, it->second); return it->second->second; } void put(const Key& key, const Value& value) { auto it = m_map.find(key); if (it != m_map.end()) { it->second->second = value; m_list.splice(m_list.begin(), m_list, it->second); return; } if (m_map.size() == m_capacity) { auto last = m_list.back(); m_map.erase(last.first); m_list.pop_back(); } m_list.emplace_front(key, value); m_map[key] = m_list.begin(); } private: int m_capacity; std::list<std::pair<Key, Value>> m_list; std::unordered_map<Key, typename std::list<std::pair<Key, Value>>::iterator> m_map; };
2. データの先読み
ビッグ データ処理では、通常、継続的なデータ アクセスが多数発生します。 IO オーバーヘッドを軽減するために、プログラムの実行中に一定量のデータをメモリに事前に読み取ることができます。以下は、データを事前に読み取るための簡単なサンプル コードです。
#include <fstream> #include <vector> void preReadData(const std::string& filename, size_t cacheSize, size_t blockSize) { std::ifstream file(filename, std::ios::binary); if (!file) { return; } std::vector<char> cache(cacheSize, 0); while (!file.eof()) { file.read(&cache[0], blockSize); // 处理读取的数据 } file.close(); }
上記のコードは、指定されたブロック サイズに従ってファイルをバッファーに読み取り、それを処理します。キャッシュサイズとブロックサイズを調整することで、実際の状況に応じた最適化を行うことができます。
3. マルチスレッドと非同期 IO を使用する
ビッグ データ処理では、IO 操作がプログラム パフォーマンスのボトルネックの 1 つになることがよくあります。 IO 効率を向上させるために、マルチスレッドと非同期 IO を使用できます。以下は、複数のスレッドを使用してデータを読み取るサンプル コードです。
#include <iostream> #include <fstream> #include <vector> #include <thread> void readData(const std::string& filename, int start, int end, std::vector<char>& data) { std::ifstream file(filename, std::ios::binary); if (!file) { return; } file.seekg(start); int size = end - start; data.resize(size); file.read(&data[0], size); file.close(); } void processLargeData(const std::string& filename, int numThreads) { std::ifstream file(filename, std::ios::binary); if (!file) { return; } file.seekg(0, std::ios::end); int fileSize = file.tellg(); file.close(); int blockSize = fileSize / numThreads; std::vector<char> cache(fileSize, 0); std::vector<std::thread> threads; for (int i = 0; i < numThreads; ++i) { int start = i * blockSize; int end = (i + 1) * blockSize; threads.emplace_back(readData, std::ref(filename), start, end, std::ref(cache)); } for (auto& t : threads) { t.join(); } // 处理读取的数据 }
上記のコードは、複数のスレッドを使用してファイルの異なる部分を同時に読み取り、データをバッファー領域にマージします。処理。 numThreadsの数を調整することで、実際の状況に応じた最適化を行うことができます。
概要
C ビッグ データ開発では、データ キャッシュ戦略を最適化すると、プログラムのパフォーマンスを大幅に向上させることができます。この記事では、LRU キャッシュ アルゴリズムの使用方法、データの先読み方法、およびマルチスレッドと非同期 IO の使用方法を紹介します。読者は、自分のニーズやシナリオに応じて適切な最適化方法を選択し、特定のコード例を使用して練習することができます。
参考資料:
- https://en.wikipedia.org/wiki/Cache_replacement_policies
- https://www.learncpp.com/cpp-tutorial / 182 読み取りおよび書き込みバイナリ ファイル/
以上がC++ ビッグ データ開発でデータ キャッシュ戦略を最適化するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Cでは、文字列でCharタイプが使用されます。1。単一の文字を保存します。 2。配列を使用して文字列を表し、ヌルターミネーターで終了します。 3。文字列操作関数を介して動作します。 4.キーボードから文字列を読み取りまたは出力します。

エラーの原因とソリューションPECLを使用してDocker環境に拡張機能をインストールする場合、Docker環境を使用するときに、いくつかの頭痛に遭遇します...

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。

言語のマルチスレッドは、プログラムの効率を大幅に改善できます。 C言語でマルチスレッドを実装する4つの主な方法があります。独立したプロセスを作成します。独立して実行される複数のプロセスを作成します。各プロセスには独自のメモリスペースがあります。擬似マルチスレッド:同じメモリ空間を共有して交互に実行するプロセスで複数の実行ストリームを作成します。マルチスレッドライブラリ:pthreadsなどのマルチスレッドライブラリを使用して、スレッドを作成および管理し、リッチスレッド操作機能を提供します。 Coroutine:タスクを小さなサブタスクに分割し、順番に実行する軽量のマルチスレッド実装。

std :: uniqueは、コンテナ内の隣接する複製要素を削除し、最後まで動かし、最初の複製要素を指すイテレーターを返します。 STD ::距離は、2つの反復器間の距離、つまり、指す要素の数を計算します。これらの2つの機能は、コードを最適化して効率を改善するのに役立ちますが、隣接する複製要素をstd ::のみ取引するというような、注意すべき落とし穴もあります。 STD ::非ランダムアクセスイテレーターを扱う場合、距離は効率が低くなります。これらの機能とベストプラクティスを習得することにより、これら2つの機能の力を完全に活用できます。

C言語では、Snake命名法はコーディングスタイルの慣習であり、アンダースコアを使用して複数の単語を接続して可変名または関数名を形成して読みやすくします。編集と操作、長い命名、IDEサポートの問題、および歴史的な荷物を考慮する必要がありますが、それは影響しませんが。

CのRelease_Semaphore関数は、取得したセマフォをリリースするために使用され、他のスレッドまたはプロセスが共有リソースにアクセスできるようにします。セマフォのカウントを1増加し、ブロッキングスレッドが実行を継続できるようにします。

dev-c 4.9.9.2コンピレーションエラーとソリューションdev-c 4.9.9.2を使用してWindows 11システムでプログラムをコンパイルする場合、コンパイラレコードペインには次のエラーメッセージが表示されます。gcc.exe:internalerror:aborted(programcollect2)pleaseubmitafullbugreport.seeforintructions。最終的な「コンピレーションは成功しています」ですが、実際のプログラムは実行できず、エラーメッセージ「元のコードアーカイブはコンパイルできません」がポップアップします。これは通常、リンカーが収集されるためです
