C++ を使用して効率的なテキスト マイニングとテキスト分析を行うにはどうすればよいですか?
C を使用して効率的なテキスト マイニングとテキスト分析を行うにはどうすればよいですか?
概要:
テキスト マイニングとテキスト分析は、最新のデータ分析と機械学習の分野における重要なタスクです。この記事では、C言語を使って効率的にテキストマイニングやテキスト分析を行う方法を紹介します。コード例とともに、テキストの前処理、特徴抽出、およびテキスト分類のテクニックに焦点を当てます。
テキストの前処理:
テキスト マイニングとテキスト分析の前に、通常、元のテキストを前処理する必要があります。前処理には、句読点、ストップワード、特殊文字の削除、小文字への変換、ステミングなどが含まれます。以下は、テキスト前処理に C を使用したサンプル コードです。
#include <iostream> #include <string> #include <algorithm> #include <cctype> std::string preprocessText(const std::string& text) { std::string processedText = text; // 去掉标点符号和特殊字符 processedText.erase(std::remove_if(processedText.begin(), processedText.end(), [](char c) { return !std::isalnum(c) && !std::isspace(c); }), processedText.end()); // 转换为小写 std::transform(processedText.begin(), processedText.end(), processedText.begin(), [](unsigned char c) { return std::tolower(c); }); // 进行词干化等其他操作 return processedText; } int main() { std::string text = "Hello, World! This is a sample text."; std::string processedText = preprocessText(text); std::cout << processedText << std::endl; return 0; }
特徴抽出:
テキスト分析タスクを実行する場合、機械学習アルゴリズムが処理できるように、テキストを数値特徴ベクトルに変換する必要があります。それ。一般的に使用される特徴抽出方法には、バッグオブワード モデルや TF-IDF などがあります。以下は、C を使用したバッグオブワード モデルと TF-IDF 特徴抽出のコード例です。
#include <iostream> #include <string> #include <vector> #include <map> #include <algorithm> std::vector<std::string> extractWords(const std::string& text) { std::vector<std::string> words; // 通过空格分割字符串 std::stringstream ss(text); std::string word; while (ss >> word) { words.push_back(word); } return words; } std::map<std::string, int> createWordCount(const std::vector<std::string>& words) { std::map<std::string, int> wordCount; for (const std::string& word : words) { wordCount[word]++; } return wordCount; } std::map<std::string, double> calculateTFIDF(const std::vector<std::map<std::string, int>>& documentWordCounts, const std::map<std::string, int>& wordCount) { std::map<std::string, double> tfidf; int numDocuments = documentWordCounts.size(); for (const auto& wordEntry : wordCount) { const std::string& word = wordEntry.first; int wordDocumentCount = 0; // 统计包含该词的文档数 for (const auto& documentWordCount : documentWordCounts) { if (documentWordCount.count(word) > 0) { wordDocumentCount++; } } // 计算TF-IDF值 double tf = static_cast<double>(wordEntry.second) / wordCount.size(); double idf = std::log(static_cast<double>(numDocuments) / (wordDocumentCount + 1)); double tfidfValue = tf * idf; tfidf[word] = tfidfValue; } return tfidf; } int main() { std::string text1 = "Hello, World! This is a sample text."; std::string text2 = "Another sample text."; std::vector<std::string> words1 = extractWords(text1); std::vector<std::string> words2 = extractWords(text2); std::map<std::string, int> wordCount1 = createWordCount(words1); std::map<std::string, int> wordCount2 = createWordCount(words2); std::vector<std::map<std::string, int>> documentWordCounts = {wordCount1, wordCount2}; std::map<std::string, double> tfidf1 = calculateTFIDF(documentWordCounts, wordCount1); std::map<std::string, double> tfidf2 = calculateTFIDF(documentWordCounts, wordCount2); // 打印TF-IDF特征向量 for (const auto& tfidfEntry : tfidf1) { std::cout << tfidfEntry.first << ": " << tfidfEntry.second << std::endl; } return 0; }
テキスト分類:
テキスト分類は、テキストをさまざまなカテゴリに分割する一般的なテキスト マイニング タスクです。一般的に使用されるテキスト分類アルゴリズムには、Naive Bayes 分類器とサポート ベクター マシン (SVM) が含まれます。以下は、テキスト分類に C を使用するサンプル コードです。
#include <iostream> #include <string> #include <vector> #include <map> #include <cmath> std::map<std::string, double> trainNaiveBayes(const std::vector<std::map<std::string, int>>& documentWordCounts, const std::vector<int>& labels) { std::map<std::string, double> classPriors; std::map<std::string, std::map<std::string, double>> featureProbabilities; int numDocuments = documentWordCounts.size(); int numFeatures = documentWordCounts[0].size(); std::vector<int> classCounts(numFeatures, 0); // 统计每个类别的先验概率和特征的条件概率 for (int i = 0; i < numDocuments; i++) { std::string label = std::to_string(labels[i]); classCounts[labels[i]]++; for (const auto& wordCount : documentWordCounts[i]) { const std::string& word = wordCount.first; featureProbabilities[label][word] += wordCount.second; } } // 计算每个类别的先验概率 for (int i = 0; i < numFeatures; i++) { double classPrior = static_cast<double>(classCounts[i]) / numDocuments; classPriors[std::to_string(i)] = classPrior; } // 计算每个特征的条件概率 for (auto& classEntry : featureProbabilities) { std::string label = classEntry.first; std::map<std::string, double>& wordProbabilities = classEntry.second; double totalWords = 0.0; for (auto& wordEntry : wordProbabilities) { totalWords += wordEntry.second; } for (auto& wordEntry : wordProbabilities) { std::string& word = wordEntry.first; double& wordCount = wordEntry.second; wordCount = (wordCount + 1) / (totalWords + numFeatures); // 拉普拉斯平滑 } } return classPriors; } int predictNaiveBayes(const std::string& text, const std::map<std::string, double>& classPriors, const std::map<std::string, std::map<std::string, double>>& featureProbabilities) { std::vector<std::string> words = extractWords(text); std::map<std::string, int> wordCount = createWordCount(words); std::map<std::string, double> logProbabilities; // 计算每个类别的对数概率 for (const auto& classEntry : classPriors) { std::string label = classEntry.first; double classPrior = classEntry.second; double logProbability = std::log(classPrior); for (const auto& wordEntry : wordCount) { const std::string& word = wordEntry.first; int wordCount = wordEntry.second; if (featureProbabilities.count(label) > 0 && featureProbabilities.at(label).count(word) > 0) { const std::map<std::string, double>& wordProbabilities = featureProbabilities.at(label); logProbability += std::log(wordProbabilities.at(word)) * wordCount; } } logProbabilities[label] = logProbability; } // 返回概率最大的类别作为预测结果 int predictedLabel = 0; double maxLogProbability = -std::numeric_limits<double>::infinity(); for (const auto& logProbabilityEntry : logProbabilities) { std::string label = logProbabilityEntry.first; double logProbability = logProbabilityEntry.second; if (logProbability > maxLogProbability) { maxLogProbability = logProbability; predictedLabel = std::stoi(label); } } return predictedLabel; } int main() { std::vector<std::string> documents = { "This is a positive document.", "This is a negative document." }; std::vector<int> labels = { 1, 0 }; std::vector<std::map<std::string, int>> documentWordCounts; for (const std::string& document : documents) { std::vector<std::string> words = extractWords(document); std::map<std::string, int> wordCount = createWordCount(words); documentWordCounts.push_back(wordCount); } std::map<std::string, double> classPriors = trainNaiveBayes(documentWordCounts, labels); int predictedLabel = predictNaiveBayes("This is a positive test document.", classPriors, featureProbabilities); std::cout << "Predicted Label: " << predictedLabel << std::endl; return 0; }
概要:
この記事では、C を使用して、テキストの前処理、特徴抽出、テキスト分類などの効率的なテキスト マイニングとテキスト分析を行う方法を紹介します。実際のアプリケーションで役立つことを期待して、コード例を通じてこれらの関数を実装する方法を示します。これらのテクノロジーとツールを通じて、大量のテキスト データをより効率的に処理および分析できます。
以上がC++ を使用して効率的なテキスト マイニングとテキスト分析を行うにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C++ でストラテジ パターンを実装する手順は次のとおりです。ストラテジ インターフェイスを定義し、実行する必要があるメソッドを宣言します。特定の戦略クラスを作成し、それぞれインターフェイスを実装し、さまざまなアルゴリズムを提供します。コンテキスト クラスを使用して、具体的な戦略クラスへの参照を保持し、それを通じて操作を実行します。

Cでは、文字列でCharタイプが使用されます。1。単一の文字を保存します。 2。配列を使用して文字列を表し、ヌルターミネーターで終了します。 3。文字列操作関数を介して動作します。 4.キーボードから文字列を読み取りまたは出力します。

エラーの原因とソリューションPECLを使用してDocker環境に拡張機能をインストールする場合、Docker環境を使用するときに、いくつかの頭痛に遭遇します...

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。

言語のマルチスレッドは、プログラムの効率を大幅に改善できます。 C言語でマルチスレッドを実装する4つの主な方法があります。独立したプロセスを作成します。独立して実行される複数のプロセスを作成します。各プロセスには独自のメモリスペースがあります。擬似マルチスレッド:同じメモリ空間を共有して交互に実行するプロセスで複数の実行ストリームを作成します。マルチスレッドライブラリ:pthreadsなどのマルチスレッドライブラリを使用して、スレッドを作成および管理し、リッチスレッド操作機能を提供します。 Coroutine:タスクを小さなサブタスクに分割し、順番に実行する軽量のマルチスレッド実装。

std :: uniqueは、コンテナ内の隣接する複製要素を削除し、最後まで動かし、最初の複製要素を指すイテレーターを返します。 STD ::距離は、2つの反復器間の距離、つまり、指す要素の数を計算します。これらの2つの機能は、コードを最適化して効率を改善するのに役立ちますが、隣接する複製要素をstd ::のみ取引するというような、注意すべき落とし穴もあります。 STD ::非ランダムアクセスイテレーターを扱う場合、距離は効率が低くなります。これらの機能とベストプラクティスを習得することにより、これら2つの機能の力を完全に活用できます。

C言語では、Snake命名法はコーディングスタイルの慣習であり、アンダースコアを使用して複数の単語を接続して可変名または関数名を形成して読みやすくします。編集と操作、長い命名、IDEサポートの問題、および歴史的な荷物を考慮する必要がありますが、それは影響しませんが。

CのRelease_Semaphore関数は、取得したセマフォをリリースするために使用され、他のスレッドまたはプロセスが共有リソースにアクセスできるようにします。セマフォのカウントを1増加し、ブロッキングスレッドが実行を継続できるようにします。
