目次
Heatmap() 関数を使用する
上記の関数のパラメーター データは、入力データ セットを表す相関行列です。ヒートマップの色付けに使用されるカラー マップは cmap と呼ばれます。
例 1
この例では、Python を使用して海生まれ相関ヒートマップを作成します。まず、seaborn ライブラリと matplotlib ライブラリをインポートし、Seaborn のデータセット読み込み関数を使用して iris データセットを読み込みます。このデータ セットには、SepalLength、SepalWidth、PetalLength、および PetalWidth 変数が含まれています。アヤメのデータセットには、アヤメの花のがく片の長さ、がく片の幅、花弁の長さ、花びらの幅の測定値が含まれています。メッセージの例は次のとおりです -
の中国語訳:
输出
ホームページ バックエンド開発 Python チュートリアル Python で Seaborn 相関ヒートマップを作成するにはどうすればよいですか?

Python で Seaborn 相関ヒートマップを作成するにはどうすればよいですか?

Aug 29, 2023 pm 08:09 PM
python 作成する seaborn

データセットでは、2 組の変数間の相関の強さと方向が、相関行列を表示する相関ヒート マップによってグラフィック表示されます。これは、大規模なデータセット内のパターンと接続を見つけるための効果的な手法です。

Python データ視覚化ツール Seaborn は、統計視覚化グラフィックを生成するためのシンプルなツールを提供します。ユーザーは、相関ヒートマップを作成する機能により、データセットの相関行列をすばやく表示できます。

データセットをインポートし、変数の相関行列を計算し、Seaborn ヒートマップ関数を使用してヒートマップを生成し、相関ヒートマップを構築する必要があります。ヒート マップには、変数間の相関の度合いを色で表すマトリックスが表示されます。さらに、相関係数をヒートマップ上に表示することもできます。

Seaborn 相関ヒートマップは、データ セット内のパターンと関係を調べるための効果的な視覚化手法であり、さらなる調査のために重要な変数を正確に特定するために使用できます。

Heatmap() 関数を使用する

ヒートマップ関数は、データセット内の 2 つの変数ペア間の相関の強さを示す色分けされたマトリックスを生成します。ヒートマップ関数では、変数の相関行列を提供する必要があります。これは、Pandas データ フレームの corr メソッドを使用して計算できます。ヒートマップ機能には、ユーザーが配色、注釈、グラフのサイズ、位置などのヒートマップの視覚効果を変更できる多数のオプション オプションが用意されています。

###文法### リーリー

上記の関数のパラメーター データは、入力データ セットを表す相関行列です。ヒートマップの色付けに使用されるカラー マップは cmap と呼ばれます。

例 1

の中国語訳は次のとおりです:

例 1

この例では、Python を使用して海生まれ相関ヒートマップを作成します。まず、seaborn ライブラリと matplotlib ライブラリをインポートし、Seaborn のデータセット読み込み関数を使用して iris データセットを読み込みます。このデータ セットには、SepalLength、SepalWidth、PetalLength、および PetalWidth 変数が含まれています。アヤメのデータセットには、アヤメの花のがく片の長さ、がく片の幅、花弁の長さ、花びらの幅の測定値が含まれています。メッセージの例は次のとおりです -

###シリアルナンバー### sepal_length ###種### 3.5 の中国語訳: 3.03.2 の翻訳は次のとおりです: 4.6 中国語翻訳: 5.0ユーザーは、Seaborn のデータセットのロード メソッドを使用して、iris データセットを Pandas DataFrame にロードできます。次に、Pandas データフレームの corr メソッドを使用して変数の相関行列が計算され、corr_matrix という変数に保存されます。 Seaborn のヒートマップ手法を使用してヒート マップを生成します。相関行列 corr_matrix を関数に渡し、cmap パラメーターを「coolwarm」に設定して、正と負の相関を表すために異なる色を使用します。最後に、matplotlib の pyplot モジュールの show メソッドを使用して、ヒート マップを表示します。
セパル_幅 花びらの長さ 花びらの幅 0 5.1
3.5 1.4 0.2 シルクスムーズ 1 4.9
1.4 0.2 シルクスムーズ 2 4.7
1.3 0.2 シルクスムーズ 3 4.6
3.1 1.5 0.2 シルクスムーズ 4 5.0
3.6 1.4 0.2 シルクスムーズ リーリー ###出力### リーリー
例 2

この例では、再び Python を使用して海生相関ヒートマップを作成します。まず、seaborn ライブラリと matplotlib ライブラリをインポートし、Seaborn のデータセット読み込み関数を使用してダイヤモンド データセットを読み込みます。ダイヤモンド データセットには、カラット重量、カット、カラー、クラリティなど、ダイヤモンドのコストと特性に関する詳細情報が含まれています。これは情報の例です -

Python で Seaborn 相関ヒートマップを作成するにはどうすればよいですか? ###シリアルナンバー### ###カラット###

cut

の中国語訳:

cut

###色###

明瞭さ深さの中国語訳は次のとおりです: ###表面### ###価格### ###バツ### の翻訳は次のとおりです: 中国語翻訳: 326 の中国語訳: 3.84 ###良い### 2.31 の中国語訳: の中国語訳: 4.20 ###良い### の中国語訳: 2.75
深さy z 0 0.23 理想理想 E SI2 61.5 55.055.0
3.953.95 3.98 2.43 1 0.21 プレミアムエディション E SI1 59.8 61.0 326 3.89
2.31 2 0.23E VS1 56.9 65.0 327 4.05 4.07
3 0.29 プレミアムエディション II VS2 62.462.4 58.0 334
4.23 2.63 4 0.31J SI2 63.3 58.0 335 4.34 4.35 2.75

可以使用 Seaborn 的加载数据集函数将钻石数据集加载到 Pandas DataFrame 中。接下来,使用 Pandas 数据帧的 corr 方法,计算变量的相关矩阵并将其存储在名为 Diamond_corr_matrix 的变量中。为了利用不同的颜色来表示与函数的正相关和负相关,我们传递相关矩阵 corr 矩阵并将 cmap 选项设置为“coolwarm”。最后,我们使用 matplotlib 的 show 方法中的 pyplot 模块来显示热图。

# Required libraries 
import seaborn as sns
import matplotlib.pyplot as plt

# Load the diamond dataset into a Pandas dataframe
diamonds_data = sns.load_dataset('diamonds')

# Compute the correlation matrix of the variables
diamonds_corr_matrix = diamonds_data.corr()
print(diamonds_corr_matrix)

# Create the heatmap using the `heatmap` function of Seaborn
sns.heatmap(diamonds_corr_matrix, cmap='coolwarm', annot=True)

# Display the heatmap using the `show` method of the `pyplot` module from matplotlib.
plt.show()
ログイン後にコピー

输出

          carat     depth     table     price         x         y         z
carat  1.000000  0.028224  0.181618  0.921591  0.975094  0.951722  0.953387
depth  0.028224  1.000000 -0.295779 -0.010647 -0.025289 -0.029341  0.094924
table  0.181618 -0.295779  1.000000  0.127134  0.195344  0.183760  0.150929
price  0.921591 -0.010647  0.127134  1.000000  0.884435  0.865421  0.861249
x      0.975094 -0.025289  0.195344  0.884435  1.000000  0.974701  0.970772
y      0.951722 -0.029341  0.183760  0.865421  0.974701  1.000000  0.952006
z      0.953387  0.094924  0.150929  0.861249  0.970772  0.952006  1.000000
ログイン後にコピー

Python で Seaborn 相関ヒートマップを作成するにはどうすればよいですか?

热图是一种有益的图形表示形式,seaborn 使其变得简单易用。

以上がPython で Seaborn 相関ヒートマップを作成するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

MongoDBデータベースパスワードを表示するNAVICATの方法 MongoDBデータベースパスワードを表示するNAVICATの方法 Apr 08, 2025 pm 09:39 PM

Hash値として保存されているため、Navicatを介してMongoDBパスワードを直接表示することは不可能です。紛失したパスワードを取得する方法:1。パスワードのリセット。 2。構成ファイルを確認します(ハッシュ値が含まれる場合があります)。 3.コードを確認します(パスワードをハードコードできます)。

Amazon AthenaでAWS接着クローラーの使用方法 Amazon AthenaでAWS接着クローラーの使用方法 Apr 09, 2025 pm 03:09 PM

データの専門家として、さまざまなソースから大量のデータを処理する必要があります。これは、データ管理と分析に課題をもたらす可能性があります。幸いなことに、AWS GlueとAmazon Athenaの2つのAWSサービスが役立ちます。

Redisでサーバーを開始する方法 Redisでサーバーを開始する方法 Apr 10, 2025 pm 08:12 PM

Redisサーバーを起動する手順には、以下が含まれます。オペレーティングシステムに従ってRedisをインストールします。 Redis-Server(Linux/Macos)またはRedis-Server.exe(Windows)を介してRedisサービスを開始します。 Redis-Cli ping(Linux/macos)またはRedis-Cli.exePing(Windows)コマンドを使用して、サービスステータスを確認します。 Redis-Cli、Python、node.jsなどのRedisクライアントを使用して、サーバーにアクセスします。

Redisキューの読み方 Redisキューの読み方 Apr 10, 2025 pm 10:12 PM

Redisのキューを読むには、キュー名を取得し、LPOPコマンドを使用して要素を読み、空のキューを処理する必要があります。特定の手順は次のとおりです。キュー名を取得します:「キュー:キュー」などの「キュー:」のプレフィックスで名前を付けます。 LPOPコマンドを使用します。キューのヘッドから要素を排出し、LPOP Queue:My-Queueなどの値を返します。空のキューの処理:キューが空の場合、LPOPはnilを返し、要素を読む前にキューが存在するかどうかを確認できます。

Redisのサーバーバージョンを表示する方法 Redisのサーバーバージョンを表示する方法 Apr 10, 2025 pm 01:27 PM

質問:Redisサーバーバージョンを表示する方法は?コマンドラインツールRedis-Cli-versionを使用して、接続されたサーバーのバージョンを表示します。 Info Serverコマンドを使用して、サーバーの内部バージョンを表示し、情報を解析および返信する必要があります。クラスター環境では、各ノードのバージョンの一貫性を確認し、スクリプトを使用して自動的にチェックできます。スクリプトを使用して、Pythonスクリプトとの接続やバージョン情報の印刷など、表示バージョンを自動化します。

Navicatのパスワードはどれくらい安全ですか? Navicatのパスワードはどれくらい安全ですか? Apr 08, 2025 pm 09:24 PM

NAVICATのパスワードセキュリティは、対称暗号化、パスワード強度、セキュリティ対策の組み合わせに依存しています。特定の測定には、SSL接続の使用(データベースサーバーが証明書をサポートして正しく構成することを条件)、NAVICATの定期的な更新、より安全なメソッド(SSHトンネルなど)を使用し、アクセス権を制限し、最も重要なことは、パスワードを記録しないことです。

See all articles