C++ を使用して二重リンクリストを反転する
この記事では、二重リンク リストがあり、C で二重リンク リストを逆にするさまざまな方法を説明します。たとえば、 -
Input : {1, 2, 3, 4} Output : {4, 3, 2, 1}
通常は 1 つの方法が思い浮かびますが、ここでは通常の方法と型破りな方法の 2 つの方法を使用します。
通常の方法
この方法では、リストを確認し、確認しながらリストを逆にします。
例
#include <bits/stdc++.h> using namespace std; class Node { public: int data; Node *next; Node *prev; }; void reverse(Node **head_ref) { auto temp = (*head_ref) -> next; (*head_ref) -> next = (*head_ref) -> prev; (*head_ref) -> prev = temp; if(temp != NULL) { (*head_ref) = (*head_ref) -> prev; reverse(head_ref); } else return; } void push(Node** head_ref, int new_data) { Node* new_node = new Node(); new_node->data = new_data; new_node->prev = NULL; new_node->next = (*head_ref); if((*head_ref) != NULL) (*head_ref) -> prev = new_node ; (*head_ref) = new_node; } int main() { Node* head = NULL; push(&head, 6); push(&head, 4); push(&head, 8); push(&head, 9); auto node = head; cout << "Before\n" ; while(node != NULL) { cout << node->data << " "; node = node->next; } cout << "\n"; reverse(&head); node = head; cout << "After\n"; while(node != NULL) { cout << node->data << " "; node = node->next; } return 0; }
出力
Before 9 8 4 6 After 6 4 8 9
このメソッドには O(N) の時間計算量が必要ですが、この複雑さの度合いで実行できるため、これは非常に優れています。より高い制約の下で。
型破りな方法
名前が示すように、これはユーザーが考えるあまり一般的な方法ではありませんが、この方法についても検討していきます。このアプローチでは、スタックを作成し、そこにデータをプッシュし続け、ポップ時にその値を変更します。
例
#include <bits/stdc++.h> using namespace std; class Node { public: int data; Node *next; Node *prev; }; void push(Node** head_ref, int new_data) { Node* new_node = new Node(); new_node->data = new_data; new_node->prev = NULL; new_node->next = (*head_ref); if((*head_ref) != NULL) (*head_ref) -> prev = new_node ; (*head_ref) = new_node; } int main() { Node* head = NULL; push(&head, 6); push(&head, 4); push(&head, 8); push(&head, 9); auto node = head; cout >> "Before\n" ; while(node != NULL) { cout >> node->data >> " "; node = node->next; } cout >> "\n"; stack<Node*> s; node = head; while(node) { head = node; s.push(node); node = node -> next; } while(!s.empty()) { auto x = s.top(); auto temp = x -> prev; x -> prev = x -> next; x -> next = temp; s.pop(); } node = head; cout << "After\n"; while(node != NULL) { cout << node->data << " "; node = node->next; } return 0; }
出力
Before 9 8 4 6 After 6 4 8 9
上記のコードの説明
このアプローチでは、リストを走査している間に設定されるスタックを使用し、その後ポップします。スタックから項目を削除し、リストが逆になるように値を変更します。 O(N) はこのプログラムの時間計算量であり、より高い制約にも適用されます。
結論
この記事では、スタックを使用せずに二重リンク リストを反転する または を使用して問題を解決しました。時間計算量は O(N) です。ここで、N はリストのサイズです。また、この問題を解決するための C プログラムと、この問題を解決するための完全な方法 (通常の方法と非正統的な方法) も学びました。同じプログラムを C、Java、Python などの他の言語で書くことができます。この記事がお役に立てば幸いです。
以上がC++ を使用して二重リンクリストを反転するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C言語データ構造:ツリーとグラフのデータ表現は、ノードからなる階層データ構造です。各ノードには、データ要素と子ノードへのポインターが含まれています。バイナリツリーは特別なタイプの木です。各ノードには、最大2つの子ノードがあります。データは、structreenode {intdata; structreenode*left; structreenode*右;}を表します。操作は、ツリートラバーサルツリー(前向き、順序、および後期)を作成します。検索ツリー挿入ノード削除ノードグラフは、要素が頂点であるデータ構造のコレクションであり、近隣を表す右または未照明のデータを持つエッジを介して接続できます。

ファイルの操作の問題に関する真実:ファイルの開きが失敗しました:不十分な権限、間違ったパス、およびファイルが占有されます。データの書き込みが失敗しました:バッファーがいっぱいで、ファイルは書き込みできず、ディスクスペースが不十分です。その他のFAQ:遅いファイルトラバーサル、誤ったテキストファイルエンコード、およびバイナリファイルの読み取りエラー。

C言語関数は、コードモジュール化とプログラム構築の基礎です。それらは、宣言(関数ヘッダー)と定義(関数体)で構成されています。 C言語は値を使用してパラメーターをデフォルトで渡しますが、外部変数はアドレスパスを使用して変更することもできます。関数は返品値を持つか、または持たない場合があり、返品値のタイプは宣言と一致する必要があります。機能の命名は、ラクダを使用するか、命名法を強調して、明確で理解しやすい必要があります。単一の責任の原則に従い、機能をシンプルに保ち、メンテナビリティと読みやすさを向上させます。

Cのカウントダウンを出力する方法は?回答:ループステートメントを使用します。手順:1。変数nを定義し、カウントダウン数を出力に保存します。 2。whileループを使用して、nが1未満になるまでnを連続的に印刷します。 3。ループ本体で、nの値を印刷します。 4。ループの端で、n x 1を減算して、次の小さな相互に出力します。

C言語マルチスレッドプログラミングガイド:スレッドの作成:pthread_create()関数を使用して、スレッドID、プロパティ、およびスレッド関数を指定します。スレッドの同期:ミューテックス、セマフォ、および条件付き変数を介したデータ競争を防ぎます。実用的なケース:マルチスレッドを使用してフィボナッチ数を計算し、複数のスレッドにタスクを割り当て、結果を同期させます。トラブルシューティング:プログラムのクラッシュ、スレッドの停止応答、パフォーマンスボトルネックなどの問題を解決します。

アルゴリズムは、問題を解決するための一連の指示であり、その実行速度とメモリの使用量はさまざまです。プログラミングでは、多くのアルゴリズムがデータ検索とソートに基づいています。この記事では、いくつかのデータ取得およびソートアルゴリズムを紹介します。線形検索では、配列[20,500,10,5,100,1,50]があることを前提としており、数50を見つける必要があります。線形検索アルゴリズムは、ターゲット値が見つかるまで、または完全な配列が見られるまで配列の各要素を1つずつチェックします。アルゴリズムのフローチャートは次のとおりです。線形検索の擬似コードは次のとおりです。各要素を確認します:ターゲット値が見つかった場合:return true return false c言語実装:#include#includeintmain(void){i

C言語処理ファイルのヒントのトラブルシューティングファイルをC言語で処理するとき、さまざまな問題に遭遇する可能性があります。以下は一般的な問題であり、対応するソリューション:問題1:ファイルコードを開くことができません:ファイル*fp = fpen( "myfile.txt"、 "r"); if(fp == null){//ファイルの開く}理由:ファイルパスエラーファイルは存在しません。 Charbuffer [100]; size_tread_bytes = fread(buffer、1、siz

C言語関数は再利用可能なコードブロックです。彼らは入力を受け取り、操作を実行し、結果を返すことができます。これにより、再利用性が改善され、複雑さが軽減されます。関数の内部メカニズムには、パラメーターの渡し、関数の実行、および戻り値が含まれます。プロセス全体には、関数インラインなどの最適化が含まれます。単一の責任、少数のパラメーター、命名仕様、エラー処理の原則に従って、優れた関数が書かれています。関数と組み合わせたポインターは、外部変数値の変更など、より強力な関数を実現できます。関数ポインターは機能をパラメーターまたはストアアドレスとして渡し、機能への動的呼び出しを実装するために使用されます。機能機能とテクニックを理解することは、効率的で保守可能で、理解しやすいCプログラムを書くための鍵です。
