復旦大学チームが中国の医療・健康パーソナルアシスタントをリリース、47万件の高品質データセットをオープンソース化
#遠隔医療の台頭により、患者は便利で効率的な医療サポートを求めてオンライン診察や診察を選択する傾向が高まっています。最近、大規模言語モデル (LLM) は強力な自然言語対話機能を実証し、医療アシスタントが人々の生活に参入するという希望をもたらしています
ホームページアドレス: https://med.fudan-disc.com Github アドレス: https://github.com/FudanDISC/DISC-MedLLM 技術レポート: https://arxiv.org/abs/2308.14346
ユーザーは自分の健康状態に基づいてモデル固有の相談質問をすることもできます。モデルは詳細で役立つ回答を返し、情報が不足している場合は積極的に質問して、回答の適切性と正確性を高めます。
#図 3: 自分の健康状態についての相談に基づく対話
信頼性と豊富な専門知識。医療知識グラフを情報源として使用し、トリプルをサンプルし、一般的な大規模モデルの言語機能を使用して対話サンプルを構築します。 複数ラウンドの対話のための調査能力。実際の診療対話記録を情報源として使用し、大規模なモデルを使用して対話を再構築しますが、その構築プロセスでは、対話内の医療情報を完全に整合させるモデルが必要です。 人間の好みに合わせて応答を調整します。患者は、診察の過程でより豊富な裏付け情報や背景知識を得ることを望んでいますが、人間の医師の回答は簡潔であることが多いため、手動スクリーニングを通じて、患者のニーズに合わせた高品質で小規模な指示サンプルを構築します。
口頭表現を削除し、統一された表現を抽出し、医師の言語使用箇所の不一致を修正します。
元の医師の回答の重要な情報にこだわり、より徹底的かつ論理的になるように適切な説明を提供します。 患者に予約を求めるなど、AI 医師が送信すべきではない応答を書き換えるか削除します。
トレーニングの最終段階で、モデルをさらに改善する パフォーマンスを向上させるために、人間の行動の好みとより一貫性のあるデータセットを二次教師付き微調整に使用します。 MedDialog と cMedQA2 の 2 つのデータセットから約 2000 の高品質で多様なサンプルを手動で選択し、いくつかのサンプルを書き換えて GPT-4 に手動で修正した後、小サンプル法を使用してそれらを GPT-3.5 に提供し、高品質のサンプルを生成しました-質の高い行動嗜好データセット。
#その他
一般データ。トレーニング セットの多様性を高め、SFT トレーニング段階でのモデルの基本機能の低下のリスクを軽減するために、2 つの一般的な教師あり微調整データセット、moss-sft-003 および alpaca gpt4 データからランダムにいくつかのサンプルを選択しました。 zh.
4. 実験
図 7: 2 段階のトレーニング プロセス
- 複数ラウンドの対話評価: モデルの対話能力を系統的に評価するために、中国医学ベンチマーク評価 (CMB-Clin)、中国医学対話という 3 つの公開データセットを使用します。データセット (CMD) と中国医療意図データセット (CMID) を統合し、GPT-3.5 は患者の役割とモデルとの対話を担うサンプルをランダムに選択し、主体性、正確さ、有用性、言語品質の 4 つの評価指標を提案しています。 3.5 4 個の評価。
- 結果の確認
単一ラウンドの QA 結果。多肢選択式評価の全体的な結果を表 2 に示します。 GPT-3.5 が明確なリードを示しています。 DISC-MedLLM はサンプル数が少ない設定では 2 位を達成し、サンプル数がゼロの設定では Baichuan-13B-Chat に次いで 3 位にランクされました。特に、強化学習設定でトレーニングされた HuatuoGPT (13B) のパフォーマンスを上回っています。
CMB-Clin と CMD/CMID の間で各モデルのパフォーマンスが一貫していないのは、3 つのデータセット間のデータ分布の違いが原因である可能性があります。 CMD と CMID には、より明確な質問のサンプルが含まれており、患者は診断を受け、症状を説明する際に明確なニーズを表明している可能性があり、患者の質問やニーズは個人の健康状態とはまったく関係がない場合もあります。多くの点で優れている汎用モデル GPT-3.5 および GPT-4 は、この状況に対処するのに優れています。
DISC-Med-SFT データセットは、現実世界の会話と一般的なドメイン LLM の利点と機能、および 3 つの側面におけるターゲットを絞った強化: ドメイン知識、医療会話スキル、人間の好み、高品質のデータセットが優れた大規模医療モデル DISC-MedLLM をトレーニングし、医療相互作用の観点から大幅な改善が行われました。を実現し、高いユーザビリティを実証し、大きな応用可能性を実証しました。
この分野の研究は、オンライン医療費の削減、医療リソースの促進、バランスの達成について、より多くの見通しと可能性をもたらすでしょう。 DISC-MedLLM は、より多くの人々に便利で個別化された医療サービスを提供し、健康全般の推進に貢献します。
以上が復旦大学チームが中国の医療・健康パーソナルアシスタントをリリース、47万件の高品質データセットをオープンソース化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









現代の製造において、正確な欠陥検出は製品の品質を確保するための鍵であるだけでなく、生産効率を向上させるための核心でもあります。ただし、既存の欠陥検出データセットには、実際のアプリケーションに必要な精度や意味論的な豊富さが欠けていることが多く、その結果、モデルが特定の欠陥カテゴリや位置を識別できなくなります。この問題を解決するために、広州香港科技大学と Simou Technology で構成されるトップの研究チームは、産業欠陥に関する詳細かつ意味的に豊富な大規模なアノテーションを提供する「DefectSpectrum」データセットを革新的に開発しました。表 1 に示すように、他の産業データ セットと比較して、「DefectSpectrum」データ セットは最も多くの欠陥注釈 (5438 個の欠陥サンプル) と最も詳細な欠陥分類 (125 個の欠陥カテゴリ) を提供します。

オープンな LLM コミュニティは百花繚乱の時代です Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1 などがご覧いただけます。優秀なパフォーマーモデル。しかし、GPT-4-Turboに代表される独自の大型モデルと比較すると、オープンモデルには依然として多くの分野で大きなギャップがあります。一般的なモデルに加えて、プログラミングと数学用の DeepSeek-Coder-V2 や視覚言語タスク用の InternVL など、主要な領域に特化したいくつかのオープン モデルが開発されています。

AI にとって、数学オリンピックはもはや問題ではありません。木曜日、Google DeepMind の人工知能は、AI を使用して今年の国際数学オリンピック IMO の本当の問題を解決するという偉業を達成し、金メダル獲得まであと一歩のところまで迫りました。先週終了したばかりの IMO コンテストでは、代数、組合せ論、幾何学、数論を含む 6 つの問題が出題されました。 Googleが提案したハイブリッドAIシステムは4問正解で28点を獲得し、銀メダルレベルに達した。今月初め、UCLA 終身教授のテレンス・タオ氏が、100 万ドルの賞金をかけて AI 数学オリンピック (AIMO Progress Award) を宣伝したばかりだったが、予想外なことに、AI の問題解決のレベルは 7 月以前にこのレベルまで向上していた。 IMO に関する質問を同時に行うのが最も難しいのは、最も歴史が長く、規模が最も大きく、最も否定的な IMO です。

編集者 | ScienceAI 限られた臨床データに基づいて、何百もの医療アルゴリズムが承認されています。科学者たちは、誰がツールをテストすべきか、そしてどのようにテストするのが最善かについて議論しています。デビン シン氏は、救急治療室で小児患者が治療を長時間待っている間に心停止に陥るのを目撃し、待ち時間を短縮するための AI の応用を模索するようになりました。 SickKids 緊急治療室からのトリアージ データを使用して、Singh 氏らは潜在的な診断を提供し、検査を推奨する一連の AI モデルを構築しました。ある研究では、これらのモデルにより医師の診察が 22.3% 短縮され、医療検査が必要な患者 1 人あたりの結果の処理が 3 時間近く高速化できることが示されました。ただし、研究における人工知能アルゴリズムの成功は、これを証明するだけです。

編集者 |KX 今日に至るまで、単純な金属から大きな膜タンパク質に至るまで、結晶学によって決定される構造の詳細と精度は、他のどの方法にも匹敵しません。しかし、最大の課題、いわゆる位相問題は、実験的に決定された振幅から位相情報を取得することのままです。デンマークのコペンハーゲン大学の研究者らは、結晶相の問題を解決するための PhAI と呼ばれる深層学習手法を開発しました。数百万の人工結晶構造とそれに対応する合成回折データを使用して訓練された深層学習ニューラル ネットワークは、正確な電子密度マップを生成できます。この研究では、この深層学習ベースの非経験的構造解法は、従来の非経験的計算法とは異なり、わずか 2 オングストロームの解像度で位相問題を解決できることが示されています。これは、原子解像度で利用可能なデータのわずか 10% ~ 20% に相当します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | 創薬の合理化における Ziluo AI の利用は爆発的に増加しています。新薬の開発に必要な特性を備えている可能性のある候補分子を数十億個スクリーニングします。材料の価格からエラーのリスクまで、考慮すべき変数が非常に多いため、たとえ科学者が AI を使用したとしても、最適な候補分子の合成コストを秤量することは簡単な作業ではありません。ここで、MIT の研究者は、最適な分子候補を自動的に特定する定量的意思決定アルゴリズム フレームワークである SPARROW を開発しました。これにより、合成コストを最小限に抑えながら、候補が望ましい特性を持つ可能性を最大限に高めることができます。このアルゴリズムは、これらの分子を合成するために必要な材料と実験手順も決定しました。 SPARROW では、複数の候補分子が入手可能な場合が多いため、分子のバッチを一度に合成するコストが考慮されます。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究
