目次
pip install --pre --upgrade bigdl-llm[all]
ログイン後にコピー
" >
pip install --pre --upgrade bigdl-llm[all]
ログイン後にコピー
示例:快速实现一个基于大语言模型的语音助手应用
△图 1. 语音助手工作流程示意
作者简介
ホームページ テクノロジー周辺機器 AI BigDL-LLM を使用して、数百億のパラメータ LLM 推論を瞬時に高速化します

BigDL-LLM を使用して、数百億のパラメータ LLM 推論を瞬時に高速化します

Sep 05, 2023 pm 01:49 PM
AI データ

私たちは、ラージ言語モデル (LLM) によって推進される AI の新時代に突入しています。LLM は、カスタマー サービス、仮想アシスタント、コンテンツ作成、プログラミング支援などのさまざまなアプリケーションでますます重要な役割を果たしています。

しかし、LLM の規模が拡大し続けるにつれて、大規模なモデルの実行に必要なリソースの消費も増加し、その実行速度がますます遅くなり、AI アプリケーション開発者に大きな課題をもたらしています。

この目的を達成するために、インテルは最近、BigDL-LLM[1] という大規模モデルのオープンソース ライブラリをリリースしました。これは、インテル ## の AI 開発者と研究者を支援します。 #® は、プラットフォーム上で大規模な言語モデルの最適化を加速し、インテル ® プラットフォーム上で大規模な言語モデルを使用するエクスペリエンスを向上させます。

用BigDL-LLM 即刻加速百亿级参数LLM推理

以下は、BigDL-LLM リアルタイム効果を使用して高速化された 330 億パラメータの大規模言語モデル Vicuna-33b-v1.3

[2] を示しています。 Intel® Xeon® Platinum 8468 プロセッサを搭載したサーバー上で実行されます。

用BigDL-LLM 即刻加速百亿级参数LLM推理
△Intel

® Xeon® Platinum 8468 プロセッサを搭載したサーバー上で 330 億パラメータのラージ言語を実行 実際の速度モデル (リアルタイム画面録画)

BigDL-LLM: Intel

® プラットフォーム上のオープンソースの大規模言語モデル アクセラレーション ライブラリ

BigDL-LLM はライブラリです大規模な言語モデルを高速化するための最適化とオープン ソース ライブラリに焦点を当てています。BigDL の一部であり、Apache 2.0 ライセンスの下でリリースされています

さまざまな低精度の最適化 (INT4/INT5/INT8 など) を提供し、さまざまな Intel

® CPU 統合ハードウェア アクセラレーション テクノロジ (AVX/VNNI/AMX など) と最新のソフトウェア最適化を活用することで、大規模な言語モデルを Intel® ## 上でより効率的な最適化を実現できます。 # プラットフォームを使用すると、より高速に実行できます。 BigDL-LLM の重要な機能は、Hugging Face Transformers API に基づくモデルの場合、コードを 1 行変更するだけでモデルを高速化できることです。理論的には、

# の実行をサポートできます。 ##any

Transformers モデル。Transformers API に精通している開発者にとって非常に使いやすいモデルです。 Transformers API に加えて、多くの人が LangChain を使用して大規模な言語モデル アプリケーションを開発しています。

この目的のために、BigDL-LLM は使いやすい LangChain 統合も提供します

[3]

これにより、開発者は BigDL-LLM を簡単に使用して、新しいアプリケーションを開発したり、既存のアプリケーション ベースを移行したりできます。 Transformers API または LangChain API で。

さらに、一般的な PyTorch の大規模言語モデル (Transformer または LangChain API を使用しないモデル) の場合、BigDL-LLM optimize_model API のワンクリック アクセラレーションを使用してパフォーマンスを向上させることもできます。詳細については、GitHub README[4]

および公式ドキュメント

[5]を参照してください。 BigDL-LLM は、一般的に使用されるオープンソース LLM アクセラレーションの例も多数提供します (例: Transformers API[6]

を使用した例や LangChain API

[7] 、およびチュートリアル (jupyter ノートブックのサポートを含む) [8]、開発者がすぐに使い始めるのを容易にする インストールと使用: シンプルなインストール プロセスと使いやすい API インターフェイス

BigDL-LLM のインストールは非常に便利です。次のコマンドを実行するだけです。

pip install --pre --upgrade bigdl-llm[all]
ログイン後にコピー

#△

コードが完全に表示されない場合は、 Sliding のままにしてくださいBigDL-LLM を使用して大規模なモデルを高速化することも非常に簡単です (ここでは例として Transformers スタイル API のみが使用されています)。BigDL-LLM を使用するモデルを高速化する Transformer スタイル API は、モデルの読み込み部分のみを変更する必要があり、その後の使用プロセスはネイティブ Transformers と完全に一致します。

BigDL-LLM API を使用してモデルを読み込む方法は次のとおりです。 Transformers API とほぼ同じ - ユーザーは from_pretrained パラメータでインポートを変更するだけで済みます

load_in_4bit=True

と設定するだけで

.BigDL-LLM が実行されますモデル読み込みプロセス中に 4 ビットの低精度量子化を行い、その後の推論プロセスで使用します。 さまざまなソフトウェアおよびハードウェア アクセラレーション テクノロジが最適化されています

#Load Hugging Face Transformers model with INT4 optimizationsfrom bigdl.llm. transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
ログイン後にコピー

# #コードが完全に表示されない場合は、左または右にスライドしてください

示例:快速实现一个基于大语言模型的语音助手应用

下文将以 LLM 常见应用场景“语音助手”为例,展示采用 BigDL-LLM 快速实现 LLM 应用的案例。通常情况下,语音助手应用的工作流程分为以下两个部分:

用BigDL-LLM 即刻加速百亿级参数LLM推理

△图 1. 语音助手工作流程示意
  1. 语音识别——使用语音识别模型(本示例采用了 Whisper 模型[9] )将用户的语音转换为文本;
  2. 文本生成——将 1 中输出的文本作为提示语 (prompt),使用一个大语言模型(本示例采用了 Llama2[10] )生成回复。

以下是本文使用 BigDL-LLM 和 LangChain[11] 来搭建语音助手应用的过程:

语音识别阶段:第一步,加载预处理器 processor 和语音识别模型 recog_model。本示例中使用的识别模型 Whisper 是一个 Transformers 模型。

只需使用 BigDL-LLM 中的 AutoModelForSpeechSeq2Seq 并设置参数 load_in_4bit=True,就能够以 INT4 精度加载并加速这一模型,从而显著缩短模型推理用时。

#processor = WhisperProcessor .from_pretrained(recog_model_path)recog_model = AutoModelForSpeechSeq2Seq .from_pretrained(recog_model_path, load_in_4bit=True)
ログイン後にコピー

若代码显示不全,请左右滑动

第二步,进行语音识别。首先使用处理器从输入语音中提取输入特征,然后使用识别模型预测 token,并再次使用处理器将 token 解码为自然语言文本。

input_features = processor(frame_data,sampling_rate=audio.sample_rate,return_tensor=“pt”).input_featurespredicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids)text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
ログイン後にコピー

若代码显示不全,请左右滑动

文本生成阶段,首先使用 BigDL-LLM 的 TransformersLLM API 创建一个 LangChain 语言模型(TransformersLLM 是在 BigDL-LLM 中定义的语言链 LLM 集成)。

可以使用这个 API 来加载 Hugging Face Transformers 的任何模型

llm = TransformersLLM . from_model_id(model_id=llm_model_path,model_kwargs={"temperature": 0, "max_length": args.max_length, "trust_remote_code": True},)
ログイン後にコピー

若代码显示不全,请左右滑动

然后,创建一个正常的对话链 LLMChain,并将已经创建的 llm 设置为输入参数。

# The following code is complete the same as the use-casevoiceassistant_chain = LLMChain(llm=llm, prompt=prompt,verbose=True,memory=ConversationBufferWindowMemory(k=2),)
ログイン後にコピー

若代码显示不全,请左右滑动

以下代码将使用一个链条来记录所有对话历史,并将其适当地格式化为大型语言模型的输入。这样,我们可以生成合适的回复。只需将识别模型生成的文本作为 "human_input" 输入即可。代码如下:

response_text = voiceassistant_chain .predict(human_input=text, stop=”\n\n”)
ログイン後にコピー

若代码显示不全,请左右滑动

最后,将语音识别和文本生成步骤放入循环中,即可在多轮对话中与该“语音助手”交谈。您可访问底部 [12] 链接,查看完整的示例代码,并使用自己的电脑进行尝试。快用 BigDL-LLM 来快速搭建自己的语音助手吧!

作者简介

黄晟盛是英特尔公司的资深架构师,黄凯是英特尔公司的AI框架工程师,戴金权是英特尔院士、大数据技术全球CTO和BigDL项目的创始人,他们都从事着与大数据和AI相关的工作

以上がBigDL-LLM を使用して、数百億のパラメータ LLM 推論を瞬時に高速化しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

GenAI および LLM の技術面接に関する 7 つのクールな質問 GenAI および LLM の技術面接に関する 7 つのクールな質問 Jun 07, 2024 am 10:06 AM

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

AI スタートアップ企業は一斉に OpenAI に転職し、イリヤが去った後にセキュリティ チームが再編成されました。 AI スタートアップ企業は一斉に OpenAI に転職し、イリヤが去った後にセキュリティ チームが再編成されました。 Jun 08, 2024 pm 01:00 PM

先週、社内の辞任と社外からの批判が相次ぐ中、OpenAIは内外のトラブルに見舞われた。 - 未亡人姉妹への侵害が世界中で白熱した議論を巻き起こした - 「覇権条項」に署名した従業員が次々と暴露 - ネットユーザーがウルトラマンの「」をリストアップ噂の払拭: Vox が入手した漏洩情報と文書によると、アルトマンを含む OpenAI の上級幹部はこれらの株式回収条項をよく認識しており、承認しました。さらに、OpenAI には、AI セキュリティという深刻かつ緊急の課題が直面しています。最近、最も著名な従業員2名を含むセキュリティ関連従業員5名が退職し、「Super Alignment」チームが解散したことで、OpenAIのセキュリティ問題が再び注目を集めている。フォーチュン誌は OpenA を報じた。

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

See all articles