コンピュータービジョン (CV) テクノロジーとは何ですか?
現在、コンピューター ビジョン (CV) テクノロジーは転換点にあり、主要なトレンドは特定の用途に最適化された小型のエッジ AI デバイスでクラウド テクノロジーをユビキタスにする方向に収束しています。 。
技術の進歩により、これらのデバイスがサイズ、電力、メモリなどの制約された環境で複雑な機能をローカルで実行できるようにする特定の課題に対処し、このクラウド中心の AI テクノロジーを可能にします。エッジまで拡張できるため、新たな開発により、ユビキタスなエッジにおける AI ビジョン。
テクノロジーの理解
CV テクノロジーはまさに最先端であり、より高いレベルのヒューマン マシン インターフェイス (HMI) を可能にします。
コンテキスト認識デバイスは、より適切な意思決定を行い、より有用な自動対話を可能にするために、ユーザーだけでなくデバイスが動作する環境も認識します。
たとえば、ラップトップはユーザーが注意を払っていることを視覚的に感知し、それに応じて動作と電源ポリシーを調整できます。これは、省電力 (ユーザーが検出されない場合にデバイスの電源をオフにする) とセキュリティ (未承認のユーザーや望ましくない「潜伏者」の検出) に役立ち、よりスムーズなユーザー エクスペリエンスを提供します。実際、この技術は、傍観者の眼球を追跡する (傍観者検出) ことにより、さらにユーザーに警告し、安全になるまで画面のコンテンツを非表示にすることができます。
別の例: スマート TV は誰かが見ているかどうかを感知し、それに応じて画質とサウンドを調整します。周囲に人がいないときは自動的にシャットダウンして電力を節約できます。空調システムは、部屋の占有状況に基づいて電力と空気の流れを最適化し、エネルギーコストを節約します。
こうした建物内でのスマート エネルギー利用の例は、ホームオフィスとハイブリッドのワーク モデルを通じて、経済的にさらに重要になります。
この技術は、テレビや PC に限定されるものではなく、セキュリティ監視 (立ち入り禁止エリア、安全な通路、保護具の施行など) 検査に使用されるオブジェクトなど、製造やその他の産業用途でも重要な役割を果たしています。予知保全と製造プロセス管理。農業も、作物の検査や品質監視など、ビジョンベースの状況認識テクノロジーから大きな恩恵を受ける分野です。
コンピュータ ビジョンのアプリケーション
ディープ ラーニングの進歩により、コンピュータ ビジョンの分野で多くの驚くべきことが可能になりました。多くの人は、日常生活でコンピューター ビジョン テクノロジーをどのように使用しているかさえ知りません。例:
画像分類とオブジェクト検出: オブジェクト検出では、分類と位置特定を組み合わせて、画像またはビデオ内のオブジェクトを識別し、画像内での位置を特定します。さまざまなオブジェクトに分類を適用し、境界ボックスを使用します。 CV は携帯電話を通じて機能し、画像やビデオ内のオブジェクトを識別するために使用できます。
銀行業務: CV は、顧客体験の向上、セキュリティの向上、業務効率の向上を目的として、不正行為の防止、本人確認、データ抽出などの分野で使用されます。
小売: このデータを処理するためのコンピューター ビジョン システムの開発により、セルフサービス チェックアウトなど、現実世界の業界のデジタル変革の実現が容易になりました。
自動運転車: コンピューター ビジョンは、物体 (道路標識や信号機など) の検出と分類、3D マップの作成や動作推定に使用され、自動運転車の実現において重要な役割を果たします。 。
エッジ履歴書
機械学習に基づくエッジビジョン処理の普遍的な傾向は明らかです。ハードウェアのコストは低下し、コンピューティング能力は大幅に向上しており、新しい手法により、必要な電力とメモリが少ない小規模モデルのトレーニングとデプロイが容易になっています。これらすべてにより、導入の障壁が軽減され、CV テクノロジーの最先端で AI の使用が増加します。
しかし、マイクロエッジ AI がより一般的になってきているとはいえ、やるべきことはまだあります。アンビエント コンピューティングを実現するには、多くの市場セグメントにわたるロングテールのユースケースに対応する必要があり、これによりスケーラビリティの課題が生じる可能性があります。
消費者製品、工場、農業、小売その他の分野では、新しいタスクごとに異なるアルゴリズムとトレーニング用の固有のデータセットが必要です。ソリューション プロバイダーは、特定のユースケースの要件を満たす最適化された機械学習対応システムを作成するための追加の開発ツールとリソースを提供します。
TinyML
TinyML は、エッジであらゆるタイプの AI を可能にする重要なイネーブラーです。これは、コンパクトなモデル アーキテクチャと最適化アルゴリズムを使用して、軽量でエネルギー効率の高い機械学習モデルをエッジ デバイス上で直接開発する方法です。
TinyML を使用すると、AI 処理をデバイス上でローカルに実行できるようになり、クラウドへの常時接続の必要性が軽減されます。 TinyML の実装は、消費電力の削減に加えて、遅延を削減し、プライバシーとセキュリティを強化し、帯域幅要件を減らすことができます。
さらに、クラウド インフラストラクチャに大きく依存することなく、エッジ デバイスがリアルタイムの意思決定を行えるようになり、スマート デバイス、ウェアラブル、産業オートメーションなどのさまざまなアプリケーションで AI がよりアクセスしやすくなり、実用的になります。これは、機能のギャップに対処するのに役立ち、AI 企業が豊富なモデル サンプル (「モデル ズー」) とアプリケーション リファレンス コードを開発することで、NPU 製品周辺のソフトウェアをアップグレードできるようになります。
そうすることで、特定のビジネス ニーズを解決するために定義されたコスト、サイズ、電力の制約の下でターゲット ハードウェアに適切なアルゴリズムを最適化することで、設計を確実に成功させながら、ロングテール向けに幅広いアプリケーションを提供できます。
以上がコンピュータービジョン (CV) テクノロジーとは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
