目次
テクノロジーを理解する
コンピューター ビジョンのアプリケーション
Edge CV
TinyML は、エッジにおけるあらゆるタイプの人工知能を実現する重要な要素です。これは、コンパクトなモデル アーキテクチャと最適化されたアルゴリズムを活用して、軽量でエネルギー効率の高い ML モデルをエッジ デバイス上で直接開発するアプローチです。
ホームページ テクノロジー周辺機器 AI 環境CV技術の新世代IoTシステムへの応用

環境CV技術の新世代IoTシステムへの応用

Sep 08, 2023 pm 11:09 PM
モノのインターネット コンピュータビジョン

环境 CV 技术在新一代物联网系统中的应用

現在、コンピューター ビジョン (CV) テクノロジーは変曲点にあり、主要なトレンドは特定の用途に最適化された小型のエッジ AI デバイスにクラウド テクノロジーを遍在させる方向に収束しており、これらのデバイスは通常バッテリーで動作します。電源が入った。

テクノロジーの進歩により、これらのデバイスがサイズ、電力、メモリなどの制約のある環境で複雑な機能をネイティブに実行できるようにする特定の課題が解決されました。このクラウド中心の AI テクノロジーはエッジにも拡張されており、新しい開発によりエッジでの AI ビジョンがユビキタスになります

テクノロジーを理解する

CV テクノロジーは実際にエッジにあり、次のレベルのヒューマン マシン インターフェイス (HMI)。

コンテキスト認識デバイスは、ユーザーだけでなくユーザーがいる環境も感知できるため、より適切な意思決定を行い、より有用な自動対話を実現できます。

たとえば、スマートフォンはユーザーの注意を視覚的に感知し、それに応じてその動作と電力戦略を調整できます。これは、電力の節約 (ユーザーが検出されない場合にデバイスの電源をオフにする)、セキュリティの向上 (権限のないユーザーや望ましくない「潜伏者」の検出) に役立ち、よりスムーズなユーザー エクスペリエンスを提供します。実際、傍観者の視線を追跡する (傍観者検出) ことにより、この技術はさらにユーザーに警告し、ユーザーが遮られなくなるまで画面のコンテンツを隠すことができます。

別の例: スマート TV は、誰かが見ているかどうか、どこで見ているかを感知できます。から視聴し、それに応じて画質と音声を調整します。人がいないときは自動的にシャットダウンして電力を節約できます。空調システムは、部屋の占有状況に基づいて電力と空気の流れを最適化し、エネルギーコストを節約します。

ホーム オフィスやハイブリッド ワーキング モデルの出現により、建物やその他の場所でのスマート エネルギー利用の事例が経済的により重要になっています

このテクノロジーの応用はテレビやパーソナル コンピューターに限定されません。製造業などの産業分野で重要な役割を果たしています。たとえば、安全監視の観点からは、物体の検出、予知保全、立ち入り禁止区域、安全な通路、保護装置の施行などの製造プロセス制御に使用できます。農業も、作物検査や品質監視など、ビジョンベースの状況認識テクノロジーの恩恵を受けることができる分野です。

コンピューター ビジョンのアプリケーション

ディープ ラーニングの進歩により、多くの驚くべきことが可能になりました。コンピュータビジョンで。多くの人は、日常生活でコンピューター ビジョン テクノロジーをどのように使用しているかさえ知りません。例:

• 画像分類とオブジェクト検出: オブジェクト検出では、分類と位置特定を組み合わせて、画像またはビデオ内のオブジェクトを識別し、画像内での位置を特定します。さまざまなオブジェクトに分類を適用し、境界ボックスを使用します。 CV は携帯電話を通じて機能し、画像やビデオ内のオブジェクトを識別するために使用できます。

銀行業界: CV は、顧客エクスペリエンスを向上させ、セキュリティを強化し、業務効率を向上させるために、不正行為の防止、本人確認、データ抽出などの分野で広く使用されています

小売業界:コンピューター ビジョン システムはこのデータの処理に使用され、セルフ チェックアウトなど実際の産業のデジタル変革をよりアクセスしやすくします。

自動運転車: コンピューター ビジョンは、物体 (道路標識や標識など) の検出と分類に使用されます。信号機など)や 3D マップの作成、または動き推定で重要な役割を果たし、自動運転車の実現を実現

Edge CV

機械学習に基づく視覚処理には明らかな傾向がありますエッジフィールドで。ハードウェアのコストは低下し続け、コンピューティング能力は大幅に向上し、新しい方法では小規模モデルのトレーニングとデプロイに必要な電力とメモリが少なくなります。これらの要因により、エッジ AI テクノロジーの導入に対する障壁は低くなり、その使用が容易になりましたが、マイクロ AI の普及がますます進んでいるにもかかわらず、やるべきことはまだあります。アンビエント コンピューティングを実現するには、多くの市場セグメントでロングテールのユースケースに対応する必要があり、これによりスケーラビリティの課題が生じる可能性があります。

消費者製品、工場、農業、小売その他の分野では、新しいタスクごとに異なるアルゴリズムとトレーニング用の固有のデータセットが必要です。ソリューション プロバイダーは、特定のユースケースのニーズを満たす最適化された ML 対応システムを作成するための、より多くの開発ツールとリソースを提供します。

TinyML

TinyML は、エッジにおけるあらゆるタイプの人工知能を実現する重要な要素です。これは、コンパクトなモデル アーキテクチャと最適化されたアルゴリズムを活用して、軽量でエネルギー効率の高い ML モデルをエッジ デバイス上で直接開発するアプローチです。

TinyML を使用すると、AI 処理をデバイス上でローカルに実行できるようになり、クラウドへの常時接続の必要性が軽減されます。 TinyML の実装は、消費電力の削減に加えて、遅延を削減し、プライバシーとセキュリティを強化し、帯域幅要件を削減します。

さらに、これにより、クラウド インフラストラクチャに過度に依存することなくエッジ デバイスがリアルタイムの意思決定を行えるようになり、スマート デバイス、ウェアラブル機器、産業オートメーションなどのさまざまなアプリケーションで AI がより利用しやすく実用的になります。これは、機能のギャップに対処するのに役立ち、AI 企業がモデル例の豊富なセット (「モデル ズー」) とアプリケーション リファレンス コードを開発することで、NPU 製品周辺のソフトウェアをアップグレードできるようになります。

このようにして、ターゲット ハードウェアに適切なアルゴリズムを最適化して、決められたコスト、サイズ、消費電力の制約内で特定のビジネス ニーズを解決できるため、設計を確実に成功させながら、より広範囲のロングテール アプリケーションをサポートできます。

以上が環境CV技術の新世代IoTシステムへの応用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

シングルステージターゲット検出アルゴリズムとデュアルステージターゲット検出アルゴリズムの違い シングルステージターゲット検出アルゴリズムとデュアルステージターゲット検出アルゴリズムの違い Jan 23, 2024 pm 01:48 PM

物体検出はコンピュータ ビジョンの分野で重要なタスクであり、画像やビデオ内の物体を識別し、その位置を特定するために使用されます。このタスクは通常、精度と堅牢性の点で異なる 2 つのカテゴリのアルゴリズム (1 段階と 2 段階) に分類されます。 1 段階ターゲット検出アルゴリズム 1 段階ターゲット検出アルゴリズムは、ターゲットの検出を分類問題に変換するアルゴリズムであり、高速で、わずか 1 ステップで検出を完了できるという利点があります。ただし、単純化しすぎたため、精度は通常、2 段階の物体検出アルゴリズムほど良くありません。一般的な 1 段階ターゲット検出アルゴリズムには、YOLO、SSD、FasterR-CNN などがあります。これらのアルゴリズムは通常、画像全体を入力として受け取り、分類器を実行してターゲット オブジェクトを識別します。従来の 2 段階のターゲット検出アルゴリズムとは異なり、事前にエリアを定義する必要はなく、直接予測します。

AI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き) AI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き) Jan 24, 2024 pm 09:57 PM

古い写真の修復は、人工知能テクノロジーを使用して古い写真を修復、強化、改善する方法です。このテクノロジーは、コンピューター ビジョンと機械学習アルゴリズムを使用して、古い写真の損傷や欠陥を自動的に特定して修復し、写真をより鮮明に、より自然に、より現実的に見せることができます。古い写真の復元の技術原則には、主に次の側面が含まれます: 1. 画像のノイズ除去と強化 古い写真を復元する場合、最初にノイズ除去と強化を行う必要があります。平均値フィルタリング、ガウス フィルタリング、バイラテラル フィルタリングなどの画像処理アルゴリズムとフィルタを使用して、ノイズやカラー スポットの問題を解決し、写真の品質を向上させることができます。 2. 画像の修復と修復 古い写真には、傷、ひび割れ、色あせなどの欠陥や損傷がある場合があります。これらの問題は、画像の復元および修復アルゴリズムによって解決できます。

コンピュータビジョンにおけるターゲット追跡の概念の解釈 コンピュータビジョンにおけるターゲット追跡の概念の解釈 Jan 24, 2024 pm 03:18 PM

オブジェクト追跡はコンピュータ ビジョンにおける重要なタスクであり、交通監視、ロボット工学、医療画像処理、自動車両追跡などの分野で広く使用されています。深層学習手法を使用して、ターゲット オブジェクトの初期位置を決定した後、ビデオ内の連続する各フレーム内のターゲット オブジェクトの位置を予測または推定します。オブジェクト追跡は実生活において幅広い用途があり、コンピュータ ビジョンの分野でも非常に重要です。オブジェクト追跡には通常、オブジェクト検出のプロセスが含まれます。以下に、オブジェクト追跡手順の概要を示します。 1. オブジェクト検出。アルゴリズムは、オブジェクトの周囲に境界ボックスを作成することによってオブジェクトを分類および検出します。 2. 各オブジェクトに一意の識別 (ID) を割り当てます。 3. 検出されたオブジェクトの動きをフレーム単位で追跡し、関連情報を保存します。ターゲットの種類 追跡ターゲット

モノのインターネットにおける人工知能と機械学習の役割は何ですか? モノのインターネットにおける人工知能と機械学習の役割は何ですか? Jan 30, 2024 pm 11:21 PM

人工知能 (AI) と機械学習 (ML) をモノのインターネット (IoT) システムに統合することは、インテリジェント テクノロジーの開発における重要な進歩を示しています。この統合は AIoT (モノのインターネットのための人工知能) と呼ばれ、システムの機能が強化されるだけでなく、IoT システムが環境内で動作、学習、適応する方法も変わります。この統合とそれが何を意味するのかを見てみましょう。 IoT における人工知能と機械学習の役割 強化されたデータ処理と分析 高度なデータ解釈: IoT デバイスは大量のデータを生成します。人工知能と機械学習は、このデータを巧みに選別し、貴重な洞察を抽出し、人間の視点や従来のデータ処理方法では見えないパターンを特定することができます。予測分析では、人工知能と機械学習を使用して、過去のデータに基づいて将来の傾向を予測します。

ロボットIoTは製造業の未来となるのか? ロボットIoTは製造業の未来となるのか? Mar 01, 2024 pm 06:10 PM

ロボット IoT は、産業用ロボットと IoT センサーという 2 つの貴重なテクノロジーを統合することを約束する新たな開発です。ロボット モノのインターネットは製造業の主流になるでしょうか? ロボット モノのインターネットとは何ですか? ロボット モノのインターネット (IoRT) は、ロボットをインターネットに接続するネットワークの形式です。これらのロボットは、IoT センサーを使用してデータを収集し、周囲の状況を解釈します。これらは、データ処理を高速化し、リソース使用率を最適化するために、人工知能やクラウド コンピューティングなどのさまざまなテクノロジと組み合わせられることがよくあります。 IoT の開発により、ロボットは環境の変化をよりインテリジェントに感知して対応できるようになり、さまざまな業界により効率的なソリューションがもたらされます。 IoT技術と統合することで、IoTは自律的な動作と自己学習を実現するだけでなく、

2024年の製造業の現状:フルデジタル化 2024年の製造業の現状:フルデジタル化 Feb 28, 2024 pm 06:10 PM

世界中で、特に製造業は、パンデミックや数年前のサプライチェーンの混乱時の困難を徐々に克服しているようです。しかし、製造業者は 2024 年までに新たな課題に直面すると予想されており、その多くはデジタル テクノロジーをより広範に応用することで解決できます。最近の業界調査は、メーカーが今年直面する課題と、それにどのように対応する予定であるかに焦点を当てています。 「State of Manufacturing Report」の調査によると、2023 年に製造業は経済の不確実性と労働力の課題に直面しており、これらの問題を解決するために新しいテクノロジーを早急に導入する必要があることがわかりました。デロイトは、2024年の製造業見通しの中で同様の点を指摘し、製造業は経済の不確実性、サプライチェーンの混乱、熟練労働者の採用における課題に直面すると指摘した。どのような状況であっても

クリスティ: テクノロジー + イノベーションの二重推進が無限の可能性をもたらす クリスティ: テクノロジー + イノベーションの二重推進が無限の可能性をもたらす Apr 23, 2024 am 08:10 AM

イノベーションを原動力とするテクノロジー企業として、Christie はインテリジェント オーディオビジュアル テクノロジーにおける包括的なソリューション、豊富な業界経験、完全なサービス ネットワークを提供できます。今年の InfoCommChina で、Christie は RGB ピュア レーザー プロジェクター、1DLP レーザー プロジェクター、LED ビデオ ウォール、コンテンツ管理および処理ソリューションを持ち込みました。イベント会場では、天体表示用に特別に設計された大規模なカスタムメイドの外球ドームがシーンの焦点となり、クリスティ M4K25RGB ピュア レーザー プロジェクターがそれに「グリーン バイタリティ」を与えました。中国商業事業部の上級技術サービスマネージャーであるSheng Xiaoqiang氏は、次のように述べています。

分散型人工知能カンファレンス DAI 2024 論文募集: エージェント デイ、強化学習の父であるリチャード サットン氏が出席します。 Yan Shuicheng、Sergey Levine、DeepMind の科学者が基調講演を行います 分散型人工知能カンファレンス DAI 2024 論文募集: エージェント デイ、強化学習の父であるリチャード サットン氏が出席します。 Yan Shuicheng、Sergey Levine、DeepMind の科学者が基調講演を行います Aug 22, 2024 pm 08:02 PM

会議の紹介 科学技術の急速な発展に伴い、人工知能は社会の進歩を促進する重要な力となっています。この時代に、分散型人工知能 (DAI) の革新と応用を目撃し、参加できることは幸運です。分散型人工知能は人工知能分野の重要な分野であり、近年ますます注目を集めています。大規模言語モデル (LLM) に基づくエージェントは、大規模モデルの強力な言語理解機能と生成機能を組み合わせることで、自然言語対話、知識推論、タスク計画などにおいて大きな可能性を示しました。 AIAgent は大きな言語モデルを引き継ぎ、現在の AI 界隈で話題になっています。アウ

See all articles