双方向加重グラフで、K 個のエッジを削除して、指定されたノード間の最短距離を見つけます。
###############導入###
この C プログラムは、K 個のエッジを削除することによって、双方向に重み付けされたグラフ内の指定された 2 つのノード間の最短距離を計算します。 K エッジの削除を制約として考慮する、修正されたダイクストラ アルゴリズムを使用します。このプログラムは、優先キューを使用してノードを効率的に選択し、削除要件に基づいてエッジの重みを動的に調整します。 K 個のエッジを削除する影響を考慮して、グラフを走査して最短パスを見つけることにより、指定されたノード間の最小距離が得られます。
方法 1: 修正されたダイクストラ アルゴリズム
###アルゴリズム###
ステップ 1
: ノードとソース ノードからの分離距離を保存する構造を作成する ステップ 2: すべての中心の分離を無限大に初期化しますが、ソース中心の分離を 0 に設定します。
ステップ 3
: ソース ノードを個々のノードとともに要件行に配置します。ステップ 4
: 必要な行がクリアされるまで、次のステップを再実行します。a. 必要な行から最小限の削除でノードを削除します b. デキューされたノードの各隣接ノードについて、エッジの重みを含めて未使用の削除を計算し、それが現在の削除よりも小さいかどうかを確認します。
c. 未使用の削除が少ない場合は、デタッチメントをアップグレードし、センターを要求キューにエンキューします。
d. ハブごとの避難エッジの数を追跡します。
ステップ 5
: K エッジの削除を検討した後、ソース ノードとターゲット ノード間の最も制限的なパスを返します。Example
の中国語訳は次のとおりです:
Exampleリーリー ###出力### リーリー 方法 2: フロイド・ウォルシュ アルゴリズム ###アルゴリズム###
ステップ 1: グラフのエッジの重みを使用して 2 次元ネットワーク dist[][] を初期化します。
ステップ 2
: ノードの各ペア間で排除されたエッジの数を追跡するために使用される 2 次元グリッド evacuated[][] を初期化します。ステップ 3
: フロイド・ウォルシュ計算法を適用して、退避される K 個のエッジを考慮して、一致する各中継局間の最短パスを計算します。
ステップ 4: K 個のエッジを考慮して除外した後、ソース ノードとターゲット ノードの間の最短距離を返します。
Example の中国語訳は次のとおりです:Example リーリー ###出力### リーリー ###結論は### K エッジの退避を考慮して、双方向加重グラフ内の指定された中心間の最短距離を見つける 2 つの方法を研究しました。これらの方法、特に修正ダイクストラ計算、フロイト-ワルチャー計算は、問題を理解するためのさまざまな方法を提供します。これらの計算をCで活用することで、Kエッジ退避を満たした最小除去量を正確に計算します。どの方法を選択するかは、グラフのメトリクス、複雑さ、当面の問題の特定の前提条件などの要素によって異なります。
以上が双方向加重グラフで、K 個のエッジを削除して、指定されたノード間の最短距離を見つけます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









C言語データ構造:ツリーとグラフのデータ表現は、ノードからなる階層データ構造です。各ノードには、データ要素と子ノードへのポインターが含まれています。バイナリツリーは特別なタイプの木です。各ノードには、最大2つの子ノードがあります。データは、structreenode {intdata; structreenode*left; structreenode*右;}を表します。操作は、ツリートラバーサルツリー(前向き、順序、および後期)を作成します。検索ツリー挿入ノード削除ノードグラフは、要素が頂点であるデータ構造のコレクションであり、近隣を表す右または未照明のデータを持つエッジを介して接続できます。

ファイルの操作の問題に関する真実:ファイルの開きが失敗しました:不十分な権限、間違ったパス、およびファイルが占有されます。データの書き込みが失敗しました:バッファーがいっぱいで、ファイルは書き込みできず、ディスクスペースが不十分です。その他のFAQ:遅いファイルトラバーサル、誤ったテキストファイルエンコード、およびバイナリファイルの読み取りエラー。

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。

C言語関数は、コードモジュール化とプログラム構築の基礎です。それらは、宣言(関数ヘッダー)と定義(関数体)で構成されています。 C言語は値を使用してパラメーターをデフォルトで渡しますが、外部変数はアドレスパスを使用して変更することもできます。関数は返品値を持つか、または持たない場合があり、返品値のタイプは宣言と一致する必要があります。機能の命名は、ラクダを使用するか、命名法を強調して、明確で理解しやすい必要があります。単一の責任の原則に従い、機能をシンプルに保ち、メンテナビリティと読みやすさを向上させます。

C言語関数名の定義には、以下が含まれます。関数名は、キーワードとの競合を避けるために、明確で簡潔で統一されている必要があります。関数名にはスコープがあり、宣言後に使用できます。関数ポインターにより、関数を引数として渡すか、割り当てます。一般的なエラーには、競合の命名、パラメータータイプの不一致、および未宣言の関数が含まれます。パフォーマンスの最適化は、機能の設計と実装に焦点を当てていますが、明確で読みやすいコードが重要です。

C言語関数は再利用可能なコードブロックです。彼らは入力を受け取り、操作を実行し、結果を返すことができます。これにより、再利用性が改善され、複雑さが軽減されます。関数の内部メカニズムには、パラメーターの渡し、関数の実行、および戻り値が含まれます。プロセス全体には、関数インラインなどの最適化が含まれます。単一の責任、少数のパラメーター、命名仕様、エラー処理の原則に従って、優れた関数が書かれています。関数と組み合わせたポインターは、外部変数値の変更など、より強力な関数を実現できます。関数ポインターは機能をパラメーターまたはストアアドレスとして渡し、機能への動的呼び出しを実装するために使用されます。機能機能とテクニックを理解することは、効率的で保守可能で、理解しやすいCプログラムを書くための鍵です。

CとC#には類似点がありますが、それらは完全に異なります。Cはプロセス指向の手動メモリ管理、およびシステムプログラミングに使用されるプラットフォーム依存言語です。 C#は、デスクトップ、Webアプリケーション、ゲーム開発に使用されるオブジェクト指向のガベージコレクション、およびプラットフォーム非依存言語です。

std :: uniqueは、コンテナ内の隣接する複製要素を削除し、最後まで動かし、最初の複製要素を指すイテレーターを返します。 STD ::距離は、2つの反復器間の距離、つまり、指す要素の数を計算します。これらの2つの機能は、コードを最適化して効率を改善するのに役立ちますが、隣接する複製要素をstd ::のみ取引するというような、注意すべき落とし穴もあります。 STD ::非ランダムアクセスイテレーターを扱う場合、距離は効率が低くなります。これらの機能とベストプラクティスを習得することにより、これら2つの機能の力を完全に活用できます。
