中国科学院院士、張仁和氏:科学的知能は人工知能の主要な開発方向となっている
所要時間は 3 秒未満で、45 億のパラメーターを備えた Fuxi 気象モデルは、今後 15 日間の世界の天気を予測できます。これは、人工知能と科学研究の組み合わせによってもたらされる変化です。
OpenAIの人気によるコンテンツ制作分野での人工知能の爆発的普及に加え、9月7日に開催された2023年包括外灘会議で、中国科学院院士で復丹副総裁の張仁和氏は次のように述べた。大学は、科学知能 (AI for Science) が今日のテクノロジーの世界で最もホットなトピックになっていると述べました。
張仁和氏は、科学的知能が人工知能の主要な開発方向となり、学際的な研究を促進し、革新的なブレークスルーを刺激すると信じています。技術革新と産業変革の徹底的な統合を加速し、産業の変革とアップグレードを促進します。 「科学的インテリジェンスは、科学研究のパラダイムの変革を促進し、科学技術における独自のイノベーションの源泉を実現するための強力なツールです。それは産業イノベーションの核爆発点を爆発させる大きな可能性を秘めています。」
近年、外国のレイアウトが加速し、科学的およびインテリジェントな開発が高速レーンに入っています。米国は知的科学の発展のための環境を構築する政策を導入しており、2023年5月に米国エネルギー省は、AIが科学の発展を促進すると述べた「科学、エネルギー、安全保障のための人工知能」報告書を発表した。エネルギーと安全保障をボトムアップで検討し、計画を策定します。
マスク氏は最近、OpenAI をターゲットとした新会社 xAI を設立し、より深い科学的疑問に答えることを目指しています彼は、将来的に AI を利用して人々が複雑な科学的および数学的問題を解決し、宇宙を「理解」できるようになることを望んでいます。
研究面では、スタンフォード大学やMITなどの有名大学や、GoogleやMetaなどのテクノロジー企業がこの分野に参入し、体系的な研究を行っています。科学的知能の発展は、一部の機関の探求から産業界、学界、研究の各界のコンセンサスへ、そして点の突破から体系的なレイアウトへと変化しており、科学的知能は人工知能の主要な開発方向となっています。
外国が台頭する一方、「国内の科学知能も急速に発展しており、科学分野の大型モデルが次々に登場しているが、まだ初期段階にある」と張仁和氏は述べた。 「AI時代」の到来を前に「一人でやっていくのは難しい」ビッグサイエンス時代の科学技術革新には、もはや「闘争」はそぐわない「組織的な科学研究」を行うために、最大の利点は、大規模なプラットフォームのレイアウトと構造にあります。
張仁和氏は、復旦大学が近年、人工知能の分野で実りある研究を行ってきたことを明らかにした。同校は、世界初の全脳コンピューティングプラットフォームを構築するため、「人工知能のフロンティア基礎理論と主要技術」と「脳と脳に似た知能の基礎変換と応用研究」という2つの主要な自治体レベルの特別プロジェクトを担当している。複数のチームが人工知能分野の代表的な論文をトップジャーナルやトップカンファレンスに発表しています。
以上が中国科学院院士、張仁和氏:科学的知能は人工知能の主要な開発方向となっているの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
