目次
解決策を見つける方法
ブルート フォース メソッド
効率的な方法
出力
上記のコードの説明
結論
ホームページ バックエンド開発 C++ C++で書かれた行列の和が最大となるペアを見つけるアルゴリズム

C++で書かれた行列の和が最大となるペアを見つけるアルゴリズム

Sep 11, 2023 pm 09:37 PM
アルゴリズム マトリックス 最大合計額

C++で書かれた行列の和が最大となるペアを見つけるアルゴリズム

この記事では、指定された行列または 2D 配列で合計が最大になるペアを見つける方法について説明します。たとえば

Input : matrix[m][n] = {
   { 3, 5, 2 },
   { 2, 6, 47 },
   { 1, 64, 66 } }

Output : 130
Explanation : maximum sum is 130 from element pair 64 and 66.

Input : matrix[m][n] = {
   { 55, 22, 46 },
   { 6, 2, 1 },
   { 3, 24, 52 } }
Output : 107
Explanation : maximum sum is 130 from element pair 55 and 52.
ログイン後にコピー

解決策を見つける方法

与えられた問題を問題なく解決するためのさまざまな手順を簡単に説明しましょう。

ブルート フォース メソッド

< p>ブルート フォース メソッドを適用できます。つまり、最初の 2 つの要素の合計で MAX 変数を初期化し、配列を反復処理して、次の要素の各ペアのチェックサムをチェックします。 MAX よりも重要な要素の場合) MAX は新しい合計値です。ただし、このプロセスにはさらに時間がかかり、時間計算量は O((m*n)2) になります。

効率的な方法

効率的な方法を使用できます。つまり、変数 MAX1 と MAX2 を 0 に初期化し、2 次元配列を走査して、現在の要素がMAX1 より大きいことが重要です。その場合は、MAX2 を MAX1 に置き換え、MAX1 を既存の部品に置き換えます。このようにして、最大の 2 つの数値を見つけることができます。明らかに、2 つの整数の合計が最大になります。

#include <bits/stdc++.h>
using namespace std;

int main() {
   int m = 3, n = 3;
   // initialising matrix with values
   int matrix[m][n] = {
      { 55, 22, 46 },
      { 6, 2, 1 },
      { 3, 24, 52 }
   };

   // initialising MAX1 and MAX2 to keep two maximum numbers.
   int MAX1 = INT_MIN;
   int MAX2 = INT_MIN;
   int result;

   for (int i = 0; i < m; i++) {
      for (int j = 0; j < n; j++) {
      // check if the element is greater than MAX1.
         if (matrix[i][j] > MAX1) {
            MAX2 = MAX1;
            MAX1 = matrix[i][j];
         }
         // check if the current element is between MAX1 and MAX2.
         else if (matrix[i][j] > MAX2 && matrix[i][j] <= MAX1) {
            MAX2 = matrix[i][j];
         }
      }
   }
   // calculating maximum sum by adding both maximum numbers.
   result = MAX1 + MAX2;
   cout << "maximum sum in Matrix : " << result ;

   return 0;
}
ログイン後にコピー

出力

maximum sum in Matrix : 107
ログイン後にコピー

上記のコードの説明

  • 要素を2次元配列に格納し、MAX1とMAX2を最小値 INT 。
  • マトリックスを走査します。
    • 現在の部品が MAX1 よりも重要な場合は、MAX2 を MAX1 に置き換え、MAX1 を現在の要素に置き換えます。
    • 現在のセクションが MAX1 よりも無駄がなく、MAX2 よりも意味がある場合は、MAX2 を現在の要素に置き換えます。
  • 2 つの MAX1 と MAX2 を加算して結果を計算し、結果を出力します。
>

結論

この記事では、与えられた行列内で合計が最大になるペアを見つけることについて説明しました。私たちは解決策を見つける方法について話し合い、そのための C コードについても話し合いました。このコードは、Java、C、Python などの他の言語で書くことができます。この記事がお役に立てば幸いです。

以上がC++で書かれた行列の和が最大となるペアを見つけるアルゴリズムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 CLIP-BEVFormer: BEVFormer 構造を明示的に監視して、ロングテール検出パフォーマンスを向上させます。 Mar 26, 2024 pm 12:41 PM

上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

人工知能の歴史とマトリックスを探る: 人工知能チュートリアル (2) 人工知能の歴史とマトリックスを探る: 人工知能チュートリアル (2) Nov 20, 2023 pm 05:25 PM

このシリーズの最初の記事では、人工知能、機械学習、深層学習、データ サイエンスなどのつながりと違いについて説明しました。また、シリーズ全体で使用するプログラミング言語やツールなどについても、いくつかの難しい選択をしました。最後に、行列の知識も少し紹介しました。この記事では、人工知能の中核であるマトリックスについて詳しく説明します。その前に、まず人工知能の歴史を理解しましょう。なぜ人工知能の歴史を理解する必要があるのでしょうか?歴史上何度もAIブームはありましたが、多くの場合、AIの可能性に対する大きな期待は実現しませんでした。人工知能の歴史を理解すると、この人工知能の波が奇跡を起こすのか、それともはじけようとしている単なるバブルなのかを知ることができます。私たち

C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる C++sort 関数の基礎となる原則とアルゴリズムの選択を調べる Apr 02, 2024 pm 05:36 PM

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる 人工知能は犯罪を予測できるのか? CrimeGPT の機能を調べる Mar 22, 2024 pm 10:10 PM

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 改良された検出アルゴリズム: 高解像度の光学式リモートセンシング画像でのターゲット検出用 Jun 06, 2024 pm 12:33 PM

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 58 ポートレート プラットフォームの構築におけるアルゴリズムの適用 May 09, 2024 am 09:01 AM

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

SOTA をリアルタイムで追加すると、大幅に増加します。 FastOcc: より高速な推論と展開に適した Occ アルゴリズムが登場しました。 SOTA をリアルタイムで追加すると、大幅に増加します。 FastOcc: より高速な推論と展開に適した Occ アルゴリズムが登場しました。 Mar 14, 2024 pm 11:50 PM

上記と著者の個人的な理解は、自動運転システムにおいて、認識タスクは自動運転システム全体の重要な要素であるということです。認識タスクの主な目的は、自動運転車が道路を走行する車両、路側の歩行者、運転中に遭遇する障害物、道路上の交通標識などの周囲の環境要素を理解して認識できるようにすることで、それによって下流のシステムを支援できるようにすることです。モジュール 正しく合理的な決定と行動を行います。自動運転機能を備えた車両には、通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなど、さまざまな種類の情報収集センサーが装備されており、自動運転車が正確に認識し、認識できるようにします。周囲の環境要素を理解することで、自動運転車が自動運転中に正しい判断を下せるようになります。頭

See all articles