目次
Falcon 180B を使用して開始できます
ホームページ テクノロジー周辺機器 AI パラメータ数1,800億、世界トップのオープンソース大型モデルFalconが正式発表! Crush LLaMA 2、パフォーマンスは GPT-4 に近い

パラメータ数1,800億、世界トップのオープンソース大型モデルFalconが正式発表! Crush LLaMA 2、パフォーマンスは GPT-4 に近い

Sep 13, 2023 pm 04:13 PM
ai モデル

一夜にして、世界で最も強力なオープンソース大型モデル Falcon 180B がネットワーク全体を爆発させました。

1,800 億のパラメータ、ファルコンは 3 兆 5,000 億のトークンでトレーニングを完了し、ハグ フェイス ランキングで直接トップになりました。

ベンチマーク テストでは、Falcon 180B が推論、コーディング、熟練度、知識テストなどのさまざまなタスクで Llama 2 を破りました。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Falcon 180B は Google PaLM 2 と同等の性能を備えており、そのパフォーマンスは GPT-4 に近いです。

しかし、NVIDIA の上級科学者 Jim Fan はこれに疑問を呈しました。

-Falcon-180B のトレーニング データでは、コードのみ5%を占めます。

コードは、推論能力の向上、ツールの使用方法の習得、AI エージェントの強化に最も役立つデータです。実際、GPT-3.5 は Codex に基づいて微調整されています。

# - エンコーディングのベースライン データがありません。

コーディング能力がなければ、「GPT-3.5 より優れている」または「GPT-4 に近い」と主張することはできません。これはトレーニング後の調整ではなく、トレーニング前のレシピに不可欠な部分である必要があります。

#- パラメータが 30B を超える言語モデルの場合は、ハイブリッド エキスパート システム (MoE) を採用する時期が来ています。 これまでのところ、OSS MoE LLM

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

ファルコン 180B とは何ですか?

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

世界で最も強力なオープンソースの大規模モデル

これまで、Falcon は 3 つのモデル サイズを発表しました。それぞれ1.3B、7.5B、40Bです。

公式紹介によると、Falcon 180B は 40B のアップグレード版で、アブダビにある世界有数の技術研究センターである TII によって打ち上げられ、無料で商用利用できます。 。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

今回、研究者らは、モデルのスケーラビリティを向上させるためにマルチクエリ アテンションを使用するなど、ベース モデルに技術革新を加えました。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

トレーニングプロセスでは、Falcon 180B は Amazon クラウド機械学習プラットフォームである Amazon SageMaker に基づいており、3.5 兆トークンのトレーニングを完了しています。最大 4096 GPU でトレーニング。

合計 GPU 計算時間、約 7,000,000。

Falcon 180B のパラメータサイズは Llama 2 (70B) の 2.5 倍であり、学習に必要な計算量は Llama 2 の 4 倍です。

特定のトレーニング データのうち、Falcon 180B は主に RefinedWe データ セットです (約 85% を占めます)。

さらに、会話、技術文書、およびコードの一部を厳選して組み合わせてトレーニングされました。

この事前トレーニング データ セットは、3 兆 5000 億のトークンでも 1 エポック未満しか占有しないほど十分な大きさです。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Falcon 180B は現時点で「最高の」オープンソース大規模モデルであると公式に主張されており、具体的なパフォーマンスは次のとおりです:

MMLU ベンチマークでは、Falcon 180B は Llama 2 70B および GPT-3.5 よりも優れています。

HellaSwag、LAMBADA、WebQuestions、Winogrande、PIQA、ARC、BoolQ、CB、COPA、RTE、WiC、WSC、ReCoRD における Google の PaLM 2-Large と同等。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

また、現在、Hugging Face オープンソース大型モデル リストで最高スコア (68.74 ポイント) を獲得しており、LlaMA 2 (67.35) を上回っているオープン大型モデルです。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

Falcon 180B を使用して開始できます

同時に、研究者はチャット対話モデル Falcon-180B もリリースしました。 -チャット。このモデルは、Open-Platypus、UltraChat、Airoboros をカバーする会話と指示のデータセットに基づいて微調整されています。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

#誰でもデモ体験ができるようになりました。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

アドレス: https://huggingface.co/tiiuae/falcon-180B-chat

プロンプト形式

基本モデルは大規模な会話モデルではなく、指示に従ってトレーニングされていないため、会話形式で応答しないため、プロンプト形式はありません。

事前トレーニングされたモデルは微調整に最適なプラットフォームですが、おそらく直接使用すべきではありません。対話モデルにはシンプルな対話モードがあります。

System: Add an optional system prompt hereUser: This is the user inputFalcon: This is what the model generatesUser: This might be a second turn inputFalcon: and so on
ログイン後にコピー

Transformers

Transformers 4.33 以降、Falcon 180B を Hugging Face エコシステムで使用およびダウンロードできるようになりました。

Hugging Face アカウントにログインし、最新バージョンのトランスフォーマーがインストールされていることを確認してください:

pip install --upgrade transformershuggingface-cli login
ログイン後にコピー

bfloat16

bfloat16 で基本モデルを使用する方法は次のとおりです。 Falcon 180B は大型モデルであるため、ハードウェア要件にご注意ください。

これに関して、ハードウェア要件は次のとおりです。

Falcon 180B を完全に微調整したい場合は、次のことがわかります。 、少なくとも 8X8X A100 80G が必要です。推論のみの場合は、8XA100 80G GPU も必要です。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

from transformers import AutoTokenizer, AutoModelForCausalLMimport transformersimport torchmodel_id = "tiiuae/falcon-180B"tokenizer = AutoTokenizer.from_pretrained(model_id)model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",)prompt = "My name is Pedro, I live in"inputs = tokenizer(prompt, return_tensors="pt").to("cuda")output = model.generate(input_ids=inputs["input_ids"],attention_mask=inputs["attention_mask"],do_sample=True,temperature=0.6,top_p=0.9,max_new_tokens=50,)output = output[0].to("cpu")print(tokenizer.decode(output)
ログイン後にコピー

は次の出力を生成します:

My name is Pedro, I live in Portugal and I am 25 years old. I am a graphic designer, but I am also passionate about photography and video.I love to travel and I am always looking for new adventures. I love to meet new people and explore new places.
ログイン後にコピー

8 ビットと 4 ビットサンドバイトを使用します。

# さらに、Falcon 180B の 8 ビットおよび 4 ビット量子化バージョンは、評価の点では bfloat16 とほとんど区別がつきません。

ユーザーは自信を持って量子化バージョンを使用してハードウェア要件を軽減できるため、これは推論にとって朗報です。

推論は、4 ビット バージョンより 8 ビット バージョンの方がはるかに高速であることに注意してください。量子化を使用するには、「bitsandbytes」ライブラリをインストールし、モデルをロードするときに対応するフラグを有効にする必要があります:

model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,**load_in_8bit=True,**device_map="auto",)
ログイン後にコピー

Dialog Model

前述したように、会話を追跡するために微調整されたモデルのバージョンでは、非常に単純なトレーニング テンプレートが使用されます。チャット形式の推論を実行するには、同じパターンに従う必要があります。

参考までに、チャット デモの [format_prompt] 関数をご覧ください。

def format_prompt(message, history, system_prompt):prompt = ""if system_prompt:prompt += f"System: {system_prompt}\n"for user_prompt, bot_response in history:prompt += f"User: {user_prompt}\n"prompt += f"Falcon: {bot_response}\n"prompt += f"User: {message}\nFalcon:"return prompt
ログイン後にコピー

ご覧のとおり、上では、ユーザーの対話とモデル。応答の前に User: および Falcon: 区切り文字が続きます。それらを結合して、会話履歴全体を含むプロンプトを作成します。このようにして、ビルド スタイルを調整するためのシステム プロンプトを提供できます。

ネチズンからの熱いコメント

多くのネチズンがファルコン 180B の真の強さについて熱い議論を交わしています。

まったく信じられない。 GPT-3.5 を上回り、Google の PaLM-2 Large と同等です。これはゲームチェンジャーです!

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

ある新興企業の CEO は、私が Falcon-180B 会話ロボットをテストしたところ、Llama2-70B チャット システムよりも優れていなかったと言っていました。 HF OpenLLM ランキングでもさまざまな結果が示されています。サイズとトレーニング セットが大きいことを考えると、これは驚くべきことです。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

栗をあげましょう:

いくつかのエントリを与えて、Falcon-180B と Llama2-70B に答えてもらいましょうそれらを別々に試してみて、どのような効果があるか見てみましょう。

Falcon-180B は、サドルを誤って動物として数えます。 Llama2-70B は簡潔に答えて正解しました。

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

1800亿参数,世界顶级开源大模型Falcon官宣!碾压LLaMA 2,性能直逼GPT-4

以上がパラメータ数1,800億、世界トップのオープンソース大型モデルFalconが正式発表! Crush LLaMA 2、パフォーマンスは GPT-4 に近いの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Webページにローカルにインストールされている「Jingnan Mai Round Body」を正しく表示するにはどうすればよいですか? Webページにローカルにインストールされている「Jingnan Mai Round Body」を正しく表示するにはどうすればよいですか? Apr 05, 2025 pm 10:33 PM

最近、Webページにローカルにインストールされたフォントファイルを使用して、インターネットから無料のフォントをダウンロードし、システムに正常にインストールしました。今...

H5ページの生産用の材料を入手する場所 H5ページの生産用の材料を入手する場所 Apr 05, 2025 pm 11:33 PM

H5ページ資料の主なソースは次のとおりです。1。プロの素材Webサイト(有料、高品質、明確な著作権)。 2。自家製の材料(高いユニーク性、しかし時間がかかる); 3。オープンソースの材料ライブラリ(無料、慎重にスクリーニングする必要があります); 4。写真/ビデオWebサイト(著作権確認が必要です)。さらに、統一された材料スタイル、サイズの適応、圧縮処理、著作権保護は、注意が必要な重要なポイントです。

CSSを介してファーストクラスの名前アイテムを使用して子要素を選択する方法は? CSSを介してファーストクラスの名前アイテムを使用して子要素を選択する方法は? Apr 05, 2025 pm 11:24 PM

要素の数が固定されていない場合、CSSを介して指定されたクラス名の最初の子要素を選択する方法。 HTML構造を処理するとき、あなたはしばしば異なる要素に遭遇します...

H5ページの生産には継続的なメンテナンスが必要ですか? H5ページの生産には継続的なメンテナンスが必要ですか? Apr 05, 2025 pm 11:27 PM

H5ページは、コードの脆弱性、ブラウザー互換性、パフォーマンスの最適化、セキュリティの更新、ユーザーエクスペリエンスの改善などの要因のため、継続的に維持する必要があります。効果的なメンテナンス方法には、完全なテストシステムの確立、バージョン制御ツールの使用、定期的にページのパフォーマンスの監視、ユーザーフィードバックの収集、メンテナンス計画の策定が含まれます。

ネガティブマージンが場合によっては効果がないのはなぜですか?この問題を解決する方法は? ネガティブマージンが場合によっては効果がないのはなぜですか?この問題を解決する方法は? Apr 05, 2025 pm 10:18 PM

なぜマイナスマージンが場合によっては有効にならないのですか?プログラミング中、CSSの負のマージン(負...

H5ページの生産に適したアプリケーションシナリオ H5ページの生産に適したアプリケーションシナリオ Apr 05, 2025 pm 11:36 PM

H5(HTML5)は、マーケティングキャンペーンページ、製品ディスプレイページ、企業プロモーションマイクロウェブサイトなどの軽量アプリケーションに適しています。その利点は、クロスプラットフォームと豊富な対話性にありますが、その制限は複雑な相互作用とアニメーション、ローカルリソースアクセス、オフライン機能にあります。

CSSのShape-Outside属性を使用して、テキストを徐々に短縮するディスプレイ効果を実現する方法は? CSSのShape-Outside属性を使用して、テキストを徐々に短縮するディスプレイ効果を実現する方法は? Apr 05, 2025 pm 10:54 PM

Webデザインでテキストを徐々に短縮するディスプレイ効果を実装する、テキストの長さを徐々に短縮するために特別なテキスト表示効果を実現する方法は?この効果...

PSが荷重を見せ続ける理由は何ですか? PSが荷重を見せ続ける理由は何ですか? Apr 06, 2025 pm 06:39 PM

PSの「読み込み」の問題は、リソースアクセスまたは処理の問題によって引き起こされます。ハードディスクの読み取り速度は遅いか悪いです。CrystaldiskInfoを使用して、ハードディスクの健康を確認し、問題のあるハードディスクを置き換えます。不十分なメモリ:高解像度の画像と複雑な層処理に対するPSのニーズを満たすためのメモリをアップグレードします。グラフィックカードドライバーは時代遅れまたは破損しています:ドライバーを更新して、PSとグラフィックスカードの間の通信を最適化します。ファイルパスが長すぎるか、ファイル名に特殊文字があります。短いパスを使用して特殊文字を避けます。 PS独自の問題:PSインストーラーを再インストールまたは修理します。

See all articles