目次
1. テクノロジー スタックを更新する必要があります。開発者は AI エンジニアの時代を迎えています
a16z によると、LangChain や LlamaIndex のようなオーケストレーションは、フレームワークによって「多くの機能が抽象化されます」 「プロンプト リンクの詳細」とは、アプリケーションと LLM 間のデータのクエリと管理を意味します。このオーケストレーション プロセスには、外部 API インターフェイスとの対話、ベクトル データベースからのコンテキスト データの取得、複数の LLM 呼び出しにわたるメモリの維持が含まれます。 a16z の図で最も興味深いボックスは、OpenAI、nat.dev、Humanloop を含む「Playground」です。
4. 組立ラインのオペレーション: LLMOps
5. Web3 が登場し、大規模なモデル開発スタックが登場
ホームページ テクノロジー周辺機器 AI 大規模なモデル開発ツールセットが作成されました。

大規模なモデル開発ツールセットが作成されました。

Sep 17, 2023 pm 02:21 PM
フレーム 大型モデル 開発スタック

書き直す必要がある内容は次のとおりです: 著者 Richard MacManus

計画 | Yan Zheng

Web3 は Web2 を破壊することはできませんでしたが、新興の大規模モデル開発スタックにより、開発者は次のことを可能にしています。 「クラウド」からスタート 「ネイティブ」の時代は、新たなAI技術スタックに向かって進んでいます。

ヒント エンジニアは、大規模なモデルに急ぐ開発者の神経には触れられないかもしれませんが、プロダクト マネージャーまたはリーダーからの一文: 「エージェント」は開発できるか、「チェーン」は実装できるか、 「どのベクトル データベースを使用するか?」という問題がありましたが、主要な主流の大規模モデル アプリケーション企業の運転技術学生にとって、生成 AI の開発を克服することは困難になっています。

新興テクノロジー スタックの層は何ですか?最も難しい部分はどこですか?この記事では、次のことがわかります。

1. テクノロジー スタックを更新する必要があります。開発者は AI エンジニアの時代を迎えています

過去 1 年で、次のようなツールがいくつか登場しました。これにより、AI アプリケーションの開発者エコシステムが成熟し始めました。現在では、人工知能の開発に注力する人たちを表す言葉として「AIエンジニア」も使われています。 Shawn @swyx Wang 氏によると、これは「迅速なエンジニア」にとっての次のステップです。また、AI エンジニアがより広範な人工知能エコシステムのどこに当てはまるかを視覚化するための座標図も作成しました。

大規模なモデル開発ツールセットが作成されました。#出典: swyx## 大規模言語モデル (LLM) AIエンジニアのコアテクノロジーです。 LangChain と LlamaIndex の両方が LLM を拡張および補完するツールであることは偶然ではありません。しかし、この新しい種類の開発者が利用できる他のツールは何でしょうか?

これまでのところ、私が見た LLM スタックの最も優れた図は、ベンチャー キャピタル会社 Andreessen Horowitz (a16z) のものです。以下は、「LLM アプリ スタック」に関する見解です:

出典: a16z大規模なモデル開発ツールセットが作成されました。

2. はい、最上位層は依然としてデータです

LLM テクノロジー スタックでは、データが最も重要なコンポーネントであることは明らかです。 a16zのチャートによれば、データは一番上にあります。 LLM では、「埋め込みモデル」は非常に重要な領域であり、OpenAI、Cohere、Hugging Face、または人気が高まっているオープンソース LLM

を含むその他の数十の LLM オプションから選択できます。LLM を使用する前に、 「データパイプライン」を確立する必要があります。たとえば、Databricks と Airflow を 2 つの例として考えてみましょう。そうでない場合、データは「非構造化」で処理できます。これはデータの周期性にも当てはまり、企業がカスタム LLM にデータを入力する前にデータを「クリーンアップ」するか、単に整理するのに役立ちます。 Alation のような「データ インテリジェンス」企業は、この種のサービスを提供しています。これは、IT テクノロジ スタックでよく知られている「ビジネス インテリジェンス」などのツールに似ています。

データ レイヤーの最後の部分は非常に人気があります。最近では、LLM データを保存および処理するためのベクトル データベース。 Microsoft の定義によれば、これはデータを高次元ベクトルとして保存するデータベースであり、これは特徴や属性の数学的表現です。データは埋め込みテクノロジを使用してベクトルとして保存され、大手ベクトル データベース ベンダーである Pinecone はメディア チャットで、自社のツールが Databricks などのデータ パイプライン ツールと併用されることが多いと述べました。この場合、データは通常、他の場所 (データ レイクなど) に保存され、機械学習モデルを介して埋め込みデータに変換されます。処理とチャンク化の後、結果のベクトルが Pinecone に送信されます。

3、ヒントとクエリ

次の 2 つのレベルはヒントとクエリとして要約できます。これは人工知能アプリケーションです。プログラムが LLM および (オプションで) 他のデータ ツールと連携する対話。 A16z は、LangChain と LlamaIndex を「オーケストレーション フレームワーク」として位置付けています。つまり、開発者が使用している LLM を理解すれば、これらのツールを活用できるということです。

a16z によると、LangChain や LlamaIndex のようなオーケストレーションは、フレームワークによって「多くの機能が抽象化されます」 「プロンプト リンクの詳細」とは、アプリケーションと LLM 間のデータのクエリと管理を意味します。このオーケストレーション プロセスには、外部 API インターフェイスとの対話、ベクトル データベースからのコンテキスト データの取得、複数の LLM 呼び出しにわたるメモリの維持が含まれます。 a16z の図で最も興味深いボックスは、OpenAI、nat.dev、Humanloop を含む「Playground」です。

A16z はブログ投稿では正確に定義されていませんが、「Playground」ツールは次のことができると推測できます。 help 開発者は、A16z が「キュー柔術」と呼ぶものを実行します。これらの場所では、開発者はさまざまなプロンプト手法を試すことができます。

Humanloop は英国の企業で、そのプラットフォームには「共同プロンプト ワークスペース」が特徴です。さらに、それ自体を「本番 LLM 機能のための完全な開発ツールキット」であると説明しています。したがって、基本的には LLM のものを試し、それが機能する場合はアプリケーションにデプロイすることができます

4. 組立ラインのオペレーション: LLMOps

現在、大規模な生産ラインのレイアウトが徐々に明らかになりつつあります。オーケストレーション ボックスの右側には、LLM キャッシュや検証などの多くの操作ボックスがあります。さらに、Hugging Face などのオープン API リポジトリや、OpenAI などの独自の API プロバイダーを含む、LLM 関連の一連のクラウド サービスと API サービスがあります。

これは、「クラウド ネイティブ」の第一歩となるかもしれません。多くの DevOps 企業が、自社の製品リストに、開発者が慣れ親しんでいる技術スタックの最も類似した場所に人工知能を追加しているのは偶然ではありません。 5月に私はハーネスのCEO、ジョティ・バンサル氏と話をした。 Harness は、CI/CD プロセスの「CD」部分に焦点を当てた「ソフトウェア配信プラットフォーム」を実行しています。

Bansai 氏は、既存の機能に基づいた仕様の生成からコードの記述に至るまで、ソフトウェア配信ライフサイクルに関わる退屈で反復的なタスクを AI が軽減できると教えてくれました。さらに同氏は、AIはコードレビュー、脆弱性テスト、バグ修正を自動化し、さらにはビルドやデプロイのためのCI/CDパイプラインの作成も可能だと述べた。 5 月に私が行った別の会話によると、AI は開発者の生産性も変化させています。ビルド自動化ツール Gradle の Trisha Gee 氏は、AI はボイラープレート コードの作成などの反復的なタスクの時間を削減し、開発者がコードがビジネス ニーズを満たしているかどうかを確認するなどの全体像に集中できるようにすることで、開発をスピードアップできると語った。

5. Web3 が登場し、大規模なモデル開発スタックが登場

新興の LLM 開発テクノロジ スタックでは、オーケストレーション フレームワーク ( LangChain や LlamaIndex など)、ベクトル データベース、Humanloop などの「プレイグラウンド」プラットフォーム。これらの製品はすべて、かつての Spring Cloud や Kubernetes などのクラウドネイティブ時代のツールの台頭と同様に、現在の時代のコアテクノロジーである大規模言語モデルを拡張および/または補完しています。ただし、現在、クラウド ネイティブ時代の大企業、中小企業、トップ企業のほぼすべてが、自社のツールを AI エンジニアリングに適応させるために最善を尽くしており、これは LLM テクノロジー スタックの将来の開発に非常に有益です。

はい、今回の大きなモデルは「巨人の肩の上に立っている」ようです。コンピューター技術における最高のイノベーションは常に過去に基づいています。おそらくそれが、「Web3」革命が失敗した理由です。それは前世代を基礎にして構築するというよりも、それを横取りしようとしたのです。

LLM テクノロジー スタックはそれを実現したようで、クラウド開発時代から新しい人工知能ベースの開発者エコシステムへの架け橋となっています

参考リンク:

https :/ /www.php.cn/link/c589c3a8f99401b24b9380e86d939842

以上が大規模なモデル開発ツールセットが作成されました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ビッグモデルアプリ Tencent Yuanbao がオンラインになりました! Hunyuan がアップグレードされ、どこにでも持ち運べるオールラウンドな AI アシスタントが作成されました ビッグモデルアプリ Tencent Yuanbao がオンラインになりました! Hunyuan がアップグレードされ、どこにでも持ち運べるオールラウンドな AI アシスタントが作成されました Jun 09, 2024 pm 10:38 PM

5月30日、TencentはHunyuanモデルの包括的なアップグレードを発表し、Hunyuanモデルに基づくアプリ「Tencent Yuanbao」が正式にリリースされ、AppleおよびAndroidアプリストアからダウンロードできるようになりました。前のテスト段階のフンユアン アプレット バージョンと比較して、Tencent Yuanbao は、日常生活シナリオ向けの AI 検索、AI サマリー、AI ライティングなどのコア機能を提供し、Yuanbao のゲームプレイもより豊富で、複数の機能を提供します。 、パーソナルエージェントの作成などの新しいゲームプレイ方法が追加されます。 Tencent Cloud 副社長で Tencent Hunyuan 大型モデルの責任者である Liu Yuhong 氏は、「テンセントは、最初に大型モデルを開発しようとはしません。」と述べました。 Tencent Hunyuan の大型モデルは、ビジネス シナリオにおける豊富で大規模なポーランド テクノロジーを活用しながら、ユーザーの真のニーズを洞察します。

Bytedance Beanbao 大型モデルがリリース、Volcano Engine フルスタック AI サービスが企業のインテリジェントな変革を支援 Bytedance Beanbao 大型モデルがリリース、Volcano Engine フルスタック AI サービスが企業のインテリジェントな変革を支援 Jun 05, 2024 pm 07:59 PM

Volcano Engine の社長である Tan Dai 氏は、大規模モデルを実装したい企業は、モデルの有効性、推論コスト、実装の難易度という 3 つの重要な課題に直面していると述べました。複雑な問題を解決するためのサポートとして、適切な基本的な大規模モデルが必要です。また、サービスは低コストの推論を備えているため、大規模なモデルを広く使用できるようになり、企業がシナリオを実装できるようにするためには、より多くのツール、プラットフォーム、アプリケーションが必要になります。 ——Huoshan Engine 01 社長、Tan Dai 氏。大きなビーンバッグ モデルがデビューし、頻繁に使用されています。モデル効果を磨き上げることは、AI の実装における最も重要な課題です。 Tan Dai 氏は、良いモデルは大量に使用することでのみ磨かれると指摘しました。現在、Doubao モデルは毎日 1,200 億トークンのテキストを処理し、3,000 万枚の画像を生成しています。企業による大規模モデルシナリオの実装を支援するために、バイトダンスが独自に開発した豆包大規模モデルが火山を通じて打ち上げられます。

産業ナレッジグラフの高度な実践 産業ナレッジグラフの高度な実践 Jun 13, 2024 am 11:59 AM

1. 背景の紹介 まず、Yunwen Technology の開発の歴史を紹介します。 Yunwen Technology Company ...2023 年は大規模モデルが普及する時期であり、多くの企業は大規模モデルの後、グラフの重要性が大幅に低下し、以前に検討されたプリセット情報システムはもはや重要ではないと考えています。しかし、RAG の推進とデータ ガバナンスの普及により、より効率的なデータ ガバナンスと高品質のデータが民営化された大規模モデルの有効性を向上させるための重要な前提条件であることがわかり、ますます多くの企業が注目し始めています。知識構築関連コンテンツへ。これにより、知識の構築と処理がより高いレベルに促進され、探索できる技術や方法が数多く存在します。新しいテクノロジーの出現によってすべての古いテクノロジーが打ち破られるわけではなく、新旧のテクノロジーが統合される可能性があることがわかります。

Xiaomi Byteが力を合わせます! Xiao Ai の Doubao へのアクセスの大規模モデル: 携帯電話と SU7 にすでにインストールされています Xiaomi Byteが力を合わせます! Xiao Ai の Doubao へのアクセスの大規模モデル: 携帯電話と SU7 にすでにインストールされています Jun 13, 2024 pm 05:11 PM

6月13日のニュースによると、Byteの「Volcano Engine」公開アカウントによると、Xiaomiの人工知能アシスタント「Xiao Ai」はVolcano Engineとの協力に達し、両社はbeanbao大型モデルに基づいて、よりインテリジェントなAIインタラクティブ体験を実現するとのこと。 。 ByteDance が作成した大規模な豆包モデルは、毎日最大 1,200 億のテキスト トークンを効率的に処理し、3,000 万個のコンテンツを生成できると報告されています。 Xiaomi は、Doubao 大型モデルを使用して、独自モデルの学習能力と推論能力を向上させ、ユーザーのニーズをより正確に把握するだけでなく、より速い応答速度とより包括的なコンテンツ サービスを提供する新しい「Xiao Ai Classmate」を作成しました。たとえば、ユーザーが複雑な科学的概念について質問する場合、&ldq

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

AIハードウェアがまたメンバー追加!携帯電話を置き換えるのではなく、NotePinは長生きできるでしょうか? AIハードウェアがまたメンバー追加!携帯電話を置き換えるのではなく、NotePinは長生きできるでしょうか? Sep 02, 2024 pm 01:40 PM

これまでのところ、AI ウェアラブル デバイス分野で特に優れた結果を達成した製品はありません。今年初めのMWC24で発表されたAIPinは、評価プロトタイプが出荷されると、発表当時に喧伝された「AI神話」が崩れ始め、わずか1年で大規模なリターンを獲得した。数か月; RabbitR1 も当初は比較的よく売れましたが、大量に出荷されたときは「Android ケース」と同様に否定的な評価を受けました。さて、別の企業がAIウェアラブルデバイス分野に参入しました。テクノロジーメディアのTheVergeは昨日、AIスタートアップのPlaudがNotePinという製品を発売したとのブログ投稿を公開した。まだ「絵を描いている」段階にあるAIFriendとは異なり、NotePinはすでに開始されています

Java フレームワークの商用サポートの費用対効果を評価する方法 Java フレームワークの商用サポートの費用対効果を評価する方法 Jun 05, 2024 pm 05:25 PM

Java フレームワークの商用サポートのコスト/パフォーマンスを評価するには、次の手順が必要です。 必要な保証レベルとサービス レベル アグリーメント (SLA) 保証を決定します。研究サポートチームの経験と専門知識。アップグレード、トラブルシューティング、パフォーマンスの最適化などの追加サービスを検討してください。ビジネス サポートのコストと、リスクの軽減と効率の向上を比較検討します。

PHP フレームワークの学習曲線は他の言語フレームワークと比較してどうですか? PHP フレームワークの学習曲線は他の言語フレームワークと比較してどうですか? Jun 06, 2024 pm 12:41 PM

PHP フレームワークの学習曲線は、言語熟練度、フレームワークの複雑さ、ドキュメントの品質、コミュニティのサポートによって異なります。 PHP フレームワークの学習曲線は、Python フレームワークと比較すると高く、Ruby フレームワークと比較すると低くなります。 Java フレームワークと比較すると、PHP フレームワークの学習曲線は中程度ですが、開始までの時間は短くなります。

See all articles