


ICCV 2023 Oral | オープンワールドでテスト セグメント トレーニングを実施するにはどうすればよいですか?動的なプロトタイプ展開に基づく自己トレーニング手法
視覚ベースの知覚手法の実装を推進する場合、モデルの汎化能力を向上させることが重要な基盤となります。テスト時トレーニング/適応 (テスト時トレーニング/適応) では、テスト フェーズ中にモデル パラメーターの重みを調整することで、モデルを未知のターゲット ドメインのデータ分布に適応させることができます。既存の TTT/TTA 手法は通常、閉じた環境でターゲット ドメイン データの下でテスト セグメントのトレーニング パフォーマンスを向上させることに重点を置いていますが、多くのアプリケーション シナリオでは、ターゲット ドメインは強力なドメイン外データ (強い OOD) の影響を受けやすくなります。 、意味的に無関係なデータ カテゴリなど。このケースはオープンワールド テスト セグメント トレーニング (OWTTT) とも呼ばれ、既存の TTT/TTA は通常、強力なドメイン外データを既知のカテゴリに強制的に分類し、最終的には次のような弱いドメイン外データ (弱い OOD) を妨害します。ノイズによって乱された画像の認識能力
最近、華南理工大学とA*STARチームは初めてオープンワールドテストセグメントトレーニングの設定を提案し、対応するトレーニング方法を開始しました

- 論文: https://arxiv.org/abs/2308.09942
- 書き直す必要がある内容は次のとおりです。コードリンク: https://github.com/Yushu-Li/OWTTT
- この記事ではまず、適応しきい値を使用した強力なドメイン外データ サンプル フィルタリング手法を提案します。これにより、ロバスト性のオープンワールドにおける自己トレーニング TTT メソッドのパフォーマンス。この方法はさらに、動的に拡張されたプロトタイプに基づいて強力なドメイン外サンプルを特徴付けて、弱い/強いドメイン外データ分離効果を改善する方法を提案します。最後に、自己トレーニングは分布の調整によって制約されます。
この記事の方法は、5 つの異なる OWTTT ベンチマークで最適なパフォーマンスを達成し、より堅牢な TTT 方法を探求するための TTT に関するその後の研究に新しい方向性を提供します。この研究は、ICCV 2023 の口頭論文として受理されました。
はじめにテスト セグメント トレーニング (TTT) は、推論フェーズ中にのみターゲット ドメイン データにアクセスし、分布シフトのあるテスト データに対してオンザフライ推論を実行できます。 TTT の成功は、人工的に選択された多数の合成的に破損したターゲット ドメイン データで実証されています。ただし、既存の TTT 手法の機能の限界は十分に調査されていません。
オープン シナリオで TTT アプリケーションを推進するために、研究の焦点は TTT 手法が失敗する可能性があるシナリオの調査に移ってきました。より現実的なオープンワールド環境で安定した堅牢な TTT 手法を開発するために多くの努力が払われてきました。この作業では、ターゲット ドメインに、ソース ドメインとは異なるセマンティック カテゴリや単なるランダム ノイズなど、大幅に異なる環境から抽出されたテスト データ分布が含まれる可能性がある、一般的だが見落とされているオープンワールド シナリオを掘り下げます。
上記のテスト データを強力な分布外データ (strong OOD) と呼びます。本作で弱いOODデータと呼んでいるのは、一般的な合成ダメージなどの分布シフトを伴うテストデータです。したがって、この現実の環境に関する既存の作業が不足しているため、テスト データが強力な OOD サンプルによって汚染されているオープン ワールド テスト セグメント トレーニング (OWTTT) の堅牢性の向上を検討する動機になります。
##書き換える必要がある内容は次のとおりです。 図 1: OWTTT 設定での既存の TTT メソッドの評価結果
図によると1 示されているように、最初に OWTTT 設定の下で既存の TTT メソッドを評価し、自己トレーニングと分布調整による TTT メソッドが強い OOD サンプルの影響を受けることがわかりました。これらの結果は、オープンワールドで既存の TTT テクノロジーを適用しても安全なテスト トレーニングを達成できないことを示しています。失敗の原因は次の 2 つであると考えられます。セルフ トレーニング ベースの TTT では、テスト サンプルを既知のクラスに割り当てる必要があるため、強力な OOD サンプルを処理することが困難です。一部の信頼性の低いサンプルは、半教師あり学習で使用されるしきい値を適用することで除外できますが、すべての強力な OOD サンプルが除外されるという保証はまだありません。
- 分布調整に基づく方法は、ターゲット ドメインの分布を推定するために強力な OOD サンプルを計算するときに影響を受けます。グローバル分布アライメント [1] とクラス分布アライメント [2] の両方が影響を受け、不正確なフィーチャ分布アライメントにつながる可能性があります。
- 自己学習フレームワークの下でオープンワールド TTT の堅牢性を向上させるために、既存の TTT 手法が失敗する潜在的な理由を検討し、2 つのテクノロジーを組み合わせたソリューションを提案しました。
まず、自己トレーニングされたバリアントで TTT のベースラインを確立します。つまり、ソース ドメイン プロトタイプをクラスター センターとして使用してターゲット ドメインでクラスタリングします。偽の擬似ラベルによる自己学習に対する強い OOD の影響を軽減するために、強い OOD サンプルを拒否するハイパーパラメータフリーの方法を提案します。
弱い OOD サンプルと強い OOD サンプルの特性をさらに分離する、プロトタイプを許可します。分離された強力な OOD サンプルを選択することでプールが拡張されます。したがって、自己トレーニングにより、強力な OOD サンプルが、新しく拡張された強力な OOD プロトタイプの周囲に密なクラスターを形成できるようになります。これにより、ソース ドメインとターゲット ドメイン間の配布の調整が容易になります。さらに、確証バイアスのリスクを軽減するために、グローバルな分布の調整を通じて自己トレーニングを定期的に行うことを提案します。
最後に、オープンワールド TTT シナリオを合成するために、CIFAR10-C、CIFAR100-C、ImageNet-C、VisDA-C、ImageNet-R、Tiny-ImageNet、MNIST、および SVHN データ セットを使用します。データセットは弱い OOD であり、他のセットはベンチマーク データ セットを確立するための強い OOD です。私たちはこのベンチマークをオープンワールド テスト セグメント トレーニング ベンチマークと呼び、これにより、より現実的なシナリオでのテスト セグメント トレーニングの堅牢性に焦点を当てた今後の作業が促進されることを期待しています。
方法
この論文は 4 つのパートに分かれて、提案された方法を紹介します。
1) オープンワールドでのテスト セクションの トレーニング タスクの設定の概要。
2) 使用方法の紹介プロトタイプ クラスタリングは、データ セット内のサンプルをさまざまなカテゴリにクラスタリングするために使用される教師なし学習アルゴリズムです。プロトタイプ クラスタリングでは、各カテゴリは 1 つ以上のプロトタイプによって表されます。プロトタイプは、データ セット内のサンプルであるか、またはいくつかのルールに従って生成されます。プロトタイプ クラスタリングの目標は、サンプルとそれらが属するカテゴリのプロトタイプとの間の距離を最小限に抑えてクラスタリングを達成することです。一般的なプロトタイプのクラスタリング アルゴリズムには、K 平均法クラスタリングと混合ガウス モデルが含まれます。これらのアルゴリズムは、データ マイニング、パターン認識、画像処理などの分野で広く使用されています。 TTT の実装と、オープンワールドのテスト時トレーニング用にプロトタイプを拡張する方法。
3) ターゲット ドメイン データを使用して書き換える必要がある内容は次のとおりです: 動的プロトタイプ拡張機能。
4)Distribution Alignment とプロトタイプ クラスタリングの導入は、データ セット内のサンプルをさまざまなカテゴリにクラスタリングするために使用される教師なし学習アルゴリズムです。プロトタイプ クラスタリングでは、各カテゴリは 1 つ以上のプロトタイプによって表されます。プロトタイプは、データ セット内のサンプルであるか、またはいくつかのルールに従って生成されます。プロトタイプ クラスタリングの目標は、サンプルとそれらが属するカテゴリのプロトタイプとの間の距離を最小限に抑えてクラスタリングを達成することです。一般的なプロトタイプのクラスタリング アルゴリズムには、K 平均法クラスタリングと混合ガウス モデルが含まれます。データマイニング、パターン認識、画像処理などの分野で広く使用されているこれらのアルゴリズムを組み合わせることで、強力なオープンワールドのテスト時トレーニングが可能になります。

#書き直す必要がある内容は次のとおりです。 図 2: メソッドの概要図
TaskTTT を設定する目的は、ソース ドメインに対してターゲット ドメインの分布が変化する可能性がある場合に、ソース ドメインの事前トレーニング済みモデルをターゲット ドメインに適応させることです。標準のクローズドワールド TTT では、ソース ドメインとターゲット ドメインのラベル スペースは同じです。ただし、オープンワールド TTT では、ターゲット ドメインのラベル スペースにソース ドメインのターゲット スペースが含まれます。これは、ターゲット ドメインにまだ見たことのない新しいセマンティック カテゴリがあることを意味します。
TTT 定義間の混乱を避けるために、 TTAC [2] で提案されている Sequential Test Time Training (sTTT) プロトコルを採用し、評価します。 sTTT プロトコルでは、テスト サンプルが順次テストされ、テスト サンプルの小さなバッチを観察した後にモデルの更新が実行されます。タイムスタンプ t に到着するテスト サンプルの予測は、t k (k は 0 より大きい) に到着するテスト サンプルの影響を受けません。
プロトタイプ クラスタリングは、データ セット内のサンプルをさまざまなカテゴリにクラスタリングするために使用される教師なし学習アルゴリズムです。プロトタイプ クラスタリングでは、各カテゴリは 1 つ以上のプロトタイプによって表されます。プロトタイプは、データ セット内のサンプルであるか、またはいくつかのルールに従って生成されます。プロトタイプ クラスタリングの目標は、サンプルとそれらが属するカテゴリのプロトタイプとの間の距離を最小限に抑えてクラスタリングを達成することです。一般的なプロトタイプのクラスタリング アルゴリズムには、K 平均法クラスタリングと混合ガウス モデルが含まれます。これらのアルゴリズムは、データ マイニング、パターン認識、画像処理などの分野で広く使用されていますドメイン適応タスクでのクラスタリングを使用する作業 [3,4] に触発され、テスト セグメントのトレーニングを発見として扱います。ターゲット ドメイン データのクラスター構造。代表的なプロトタイプをクラスター中心として特定することにより、クラスター構造がターゲット ドメイン内で特定され、テスト サンプルをプロトタイプの 1 つの近くに埋め込むことが推奨されます。プロトタイプ クラスタリングは、データ セット内のサンプルをさまざまなカテゴリにクラスタリングするために使用される教師なし学習アルゴリズムです。プロトタイプ クラスタリングでは、各カテゴリは 1 つ以上のプロトタイプによって表されます。プロトタイプは、データ セット内のサンプルであるか、またはいくつかのルールに従って生成されます。プロトタイプ クラスタリングの目標は、サンプルとそれらが属するカテゴリのプロトタイプとの間の距離を最小限に抑えてクラスタリングを達成することです。一般的なプロトタイプのクラスタリング アルゴリズムには、K 平均法クラスタリングと混合ガウス モデルが含まれます。データ マイニング、パターン認識、画像処理などの分野で広く使用されているこれらのアルゴリズムの目標は、図に示すように、サンプルとクラスター中心間のコサイン類似度の負の対数尤度損失を最小限に抑えることとして定義されます。次の方程式。



#外れ値は、図3に示すようにバイモーダル分布に従います。したがって、固定のしきい値を指定する代わりに、2 つの分布を分離する最良の値として最適しきい値を定義します。具体的には、この問題は外れ値を 2 つのクラスターに分割するものとして定式化でき、最適なしきい値は のクラスター内分散を最小化します。次の式の最適化は、0 から 1 までのすべての可能なしきい値を 0.01 刻みで徹底的に検索することで効率的に実現できます。
書き直す必要がある内容は次のとおりです: 動的プロトタイプ拡張機能
追加のハイパーパラメータを推定する困難を軽減するために、最初に、次のように、既存のソース ドメイン プロトタイプと強力な OOD プロトタイプに最も近い距離として、拡張された強力な OOD スコアを持つテスト サンプルを定義します。したがって、このしきい値を超えてサンプルをテストすると、新しいプロトタイプが構築されます。近くのテストサンプルを追加しないようにするために、このプロトタイプの拡張プロセスを段階的に繰り返します。
他の強力な OOD プロトタイプが特定されたので、テスト サンプルのプロトタイプを定義します。クラスタリングは、データセット内のサンプルを分類するための教師なし学習アルゴリズムであり、さまざまなカテゴリにクラスター化されます。プロトタイプ クラスタリングでは、各カテゴリは 1 つ以上のプロトタイプによって表されます。プロトタイプは、データ セット内のサンプルであるか、またはいくつかのルールに従って生成されます。プロトタイプ クラスタリングの目標は、サンプルとそれらが属するカテゴリのプロトタイプとの間の距離を最小限に抑えてクラスタリングを達成することです。一般的なプロトタイプのクラスタリング アルゴリズムには、K 平均法クラスタリングと混合ガウス モデルが含まれます。これらのアルゴリズムは、データマイニング、パターン認識、画像処理などの分野で広く使用されており、損失には 2 つの要素が考慮されます。まず、既知のクラスに分類されたテスト サンプルは、プロトタイプに近く、他のプロトタイプからは遠くに埋め込まれる必要があります。これが K クラス分類タスクを定義します。第 2 に、強力な OOD プロトタイプとして分類されたテスト サンプルは、K 1 クラス分類タスクを定義するソース ドメイン プロトタイプから遠く離れている必要があります。これらの目標を念頭に置いて、データセット内のサンプルを個別のカテゴリにクラスタリングするために使用される教師なし学習アルゴリズムであるクラスタリングのプロトタイプを作成しました。プロトタイプ クラスタリングでは、各カテゴリは 1 つ以上のプロトタイプによって表されます。プロトタイプは、データ セット内のサンプルであるか、またはいくつかのルールに従って生成されます。プロトタイプ クラスタリングの目標は、サンプルとそれらが属するカテゴリのプロトタイプとの間の距離を最小限に抑えてクラスタリングを達成することです。一般的なプロトタイプのクラスタリング アルゴリズムには、K 平均法クラスタリングと混合ガウス モデルが含まれます。これらのアルゴリズムはデータマイニング、パターン認識、画像処理などの分野で広く使われており、損失は次の式で定義されます。

##5 つの異なる OWTTT ベンチマーク データセットで実験を実行しました。テストは次のとおりです。合成的に破損したデータセットやスタイルが異なるデータセットを含めて実行されました。実験では主に、弱OOD分類精度ACCS、強OOD分類精度ACCN、および2つのACCHの調和平均という3つの評価指標を使用します。
参考文献:
[2] Yongyi Su、Xun Xu、および Kui Jia. 現実的再考テスト時トレーニング: アンカー クラスタリングによる逐次推論と適応、神経情報処理システムの進歩、2022.
[3] Tang Hui と Jia Kui。差別的な敵対的ドメイン適応。 In Proceedings of the AAAI Conference on Artificial Intelligence、volume 34、pages 5940-5947、2020
[4] 斉藤邦明、山本翔平、牛久義隆、原田達也 オープンセットドメインバックプロパゲーションによる適応。欧州コンピュータ ビジョン会議、2018.
[5] Brian Kulis と Michael I Jordan。 K 平均法の再考: ベイジアン ノンパラメトリック手法による新しいアルゴリズム。機械学習に関する国際会議にて、2012
以上がICCV 2023 Oral | オープンワールドでテスト セグメント トレーニングを実施するにはどうすればよいですか?動的なプロトタイプ展開に基づく自己トレーニング手法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









拡散はより良いものを模倣するだけでなく、「創造」することもできます。拡散モデル(DiffusionModel)は、画像生成モデルである。 AI 分野でよく知られている GAN や VAE などのアルゴリズムと比較すると、拡散モデルは異なるアプローチを採用しており、その主な考え方は、最初に画像にノイズを追加し、その後徐々にノイズを除去するプロセスです。ノイズを除去して元の画像を復元する方法は、アルゴリズムの中核部分です。最後のアルゴリズムは、ランダムなノイズを含む画像から画像を生成できます。近年、生成 AI の驚異的な成長により、テキストから画像への生成、ビデオ生成など、多くのエキサイティングなアプリケーションが可能になりました。これらの生成ツールの背後にある基本原理は、以前の方法の制限を克服する特別なサンプリング メカニズムである拡散の概念です。

キミ: たった 1 文の PPT がわずか 10 秒で完成します。 PPTはとても面倒です!会議を開催するには PPT が必要であり、週次報告書を作成するには PPT が必要であり、投資を勧誘するには PPT を提示する必要があり、不正行為を告発するには PPT を送信する必要があります。大学は、PPT 専攻を勉強するようなものです。授業中に PPT を見て、授業後に PPT を行います。おそらく、デニス オースティンが 37 年前に PPT を発明したとき、PPT がこれほど普及する日が来るとは予想していなかったでしょう。 PPT 作成の大変な経験を話すと涙が出ます。 「20 ページを超える PPT を作成するのに 3 か月かかり、何十回も修正しました。PPT を見ると吐きそうになりました。」 「ピーク時には 1 日に 5 枚の PPT を作成し、息をすることさえありました。」 PPTでした。」 即席の会議をするなら、そうすべきです

北京時間6月20日早朝、シアトルで開催されている最高の国際コンピュータビジョンカンファレンス「CVPR2024」が、最優秀論文やその他の賞を正式に発表した。今年は、最優秀論文 2 件と学生優秀論文 2 件を含む合計 10 件の論文が賞を受賞しました。また、最優秀論文ノミネートも 2 件、学生優秀論文ノミネートも 4 件ありました。コンピュータービジョン (CV) 分野のトップカンファレンスは CVPR で、毎年多数の研究機関や大学が集まります。統計によると、今年は合計 11,532 件の論文が投稿され、2,719 件が採択され、採択率は 23.6% でした。ジョージア工科大学による CVPR2024 データの統計分析によると、研究テーマの観点から最も論文数が多いのは画像とビデオの合成と生成です (Imageandvideosyn

LLM が大量のデータを使用して大規模なコンピューター クラスターでトレーニングされていることはわかっています。このサイトでは、LLM トレーニング プロセスを支援および改善するために使用される多くの方法とテクノロジが紹介されています。今日、私たちが共有したいのは、基礎となるテクノロジーを深く掘り下げ、オペレーティング システムさえ持たない大量の「ベア メタル」を LLM のトレーニング用のコンピューター クラスターに変える方法を紹介する記事です。この記事は、機械がどのように考えるかを理解することで一般的な知能の実現に努めている AI スタートアップ企業 Imbue によるものです。もちろん、オペレーティング システムを持たない大量の「ベア メタル」を LLM をトレーニングするためのコンピューター クラスターに変換することは、探索と試行錯誤に満ちた簡単なプロセスではありませんが、Imbue は最終的に 700 億のパラメータを備えた LLM のトレーニングに成功しました。プロセスが蓄積する

C言語は広く使われているプログラミング言語であり、コンピュータプログラミングを志す人にとって必ず学ばなければならない基本的な言語の一つです。ただし、初心者にとって、特に関連する学習ツールや教材が不足しているため、新しいプログラミング言語を学習するのは難しい場合があります。この記事では、C言語初心者がすぐに始められるプログラミングソフトを5つ紹介します。最初のプログラミング ソフトウェアは Code::Blocks でした。 Code::Blocks は、無料のオープンソース統合開発環境 (IDE) です。

PyCharm コミュニティ版のクイック スタート: 詳細なインストール チュートリアル 完全な分析 はじめに: PyCharm は、開発者が Python コードをより効率的に作成できるようにする包括的なツール セットを提供する強力な Python 統合開発環境 (IDE) です。この記事では、PyCharm Community Edition のインストール方法を詳しく紹介し、初心者がすぐに使い始めるのに役立つ具体的なコード例を示します。ステップ 1: PyCharm Community Edition をダウンロードしてインストールする PyCharm を使用するには、まず公式 Web サイトからダウンロードする必要があります

Machine Power Report 編集者: Yang Wen 大型モデルや AIGC に代表される人工知能の波は、私たちの生活や働き方を静かに変えていますが、ほとんどの人はまだその使い方を知りません。そこで、直感的で興味深く、簡潔な人工知能のユースケースを通じてAIの活用方法を詳しく紹介し、皆様の思考を刺激するコラム「AI in Use」を立ち上げました。また、読者が革新的な実践的な使用例を提出することも歓迎します。ビデオリンク: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ 最近、Xiaohongshu で一人暮らしの女の子の生活 vlog が人気になりました。イラスト風のアニメーションといくつかの癒しの言葉を組み合わせれば、数日で簡単に習得できます。

タイトル: 技術初心者必読: 具体的なコード例を必要とする C 言語と Python の難易度分析 今日のデジタル時代において、プログラミング技術はますます重要な能力となっています。ソフトウェア開発、データ分析、人工知能などの分野で働きたい場合でも、単に興味があってプログラミングを学びたい場合でも、適切なプログラミング言語を選択することが最初のステップです。数あるプログラミング言語の中でも、C言語とPythonは広く使われているプログラミング言語であり、それぞれに独自の特徴があります。この記事ではC言語とPythonの難易度を分析します。
