C++ で最小スパニング ツリー アルゴリズムを使用する方法
C で最小スパニング ツリー アルゴリズムを使用する方法
最小スパニング ツリー (最小スパニング ツリー、MST) は、グラフ理論の重要な概念です。無向接続グラフのすべての頂点のエッジのサブセットであり、これらのエッジの重みの合計が最小になります。プリムのアルゴリズムやクラスカルのアルゴリズムなど、最小スパニング ツリーを解くために使用できるアルゴリズムは数多くあります。この記事では、C を使用して Prim のアルゴリズムと Kruskal のアルゴリズムを実装する方法と、具体的なコード例を紹介します。
Prim のアルゴリズムは貪欲なアルゴリズムで、グラフの頂点から開始し、現在の最小全域木に接続されている最小の重みを持つエッジを徐々に選択し、そのエッジを最小全域木に追加します。以下は、Prim のアルゴリズムの C コード例です:
#include <iostream> #include <vector> #include <queue> using namespace std; const int INF = 1e9; int prim(vector<vector<pair<int, int>>>& graph) { int n = graph.size(); // 图的顶点数 vector<bool> visited(n, false); // 标记顶点是否已访问 vector<int> dist(n, INF); // 记录顶点到最小生成树的最短距离 int minCost = 0; // 最小生成树的总权值 // 从第一个顶点开始构建最小生成树 dist[0] = 0; // 使用优先队列保存当前距离最小的顶点和权值 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; pq.push(make_pair(0, 0)); while (!pq.empty()) { int u = pq.top().second; // 当前距离最小的顶点 pq.pop(); // 如果顶点已访问过,跳过 if (visited[u]) { continue; } visited[u] = true; // 标记顶点为已访问 minCost += dist[u]; // 加入顶点到最小生成树的权值 // 对于顶点u的所有邻接顶点v for (auto& edge : graph[u]) { int v = edge.first; int weight = edge.second; // 如果顶点v未访问过,并且到顶点v的距离更小 if (!visited[v] && weight < dist[v]) { dist[v] = weight; pq.push(make_pair(dist[v], v)); } } } return minCost; } int main() { int n, m; // 顶点数和边数 cin >> n >> m; vector<vector<pair<int, int>>> graph(n); // 读取边的信息 for (int i = 0; i < m; ++i) { int u, v, w; // 边的两个顶点及其权值 cin >> u >> v >> w; --u; --v; // 顶点从0开始编号 graph[u].push_back(make_pair(v, w)); graph[v].push_back(make_pair(u, w)); } int minCost = prim(graph); cout << "最小生成树的权值之和为:" << minCost << endl; return 0; }
Kruskal のアルゴリズムは、エッジベースの貪欲アルゴリズムです。グラフのすべてのエッジから最小の重みを持つエッジを選択し、そのエッジがグラフを形成するかどうかを決定します。サイクルです。サイクルが形成されない場合は、最小スパニング ツリーにエッジを追加します。以下は、Kruskal のアルゴリズムの C コード例です。
#include <iostream> #include <vector> #include <algorithm> using namespace std; struct Edge { int u, v, weight; // 边的两个顶点及其权值 Edge(int u, int v, int weight) : u(u), v(v), weight(weight) {} }; const int MAXN = 100; // 最大顶点数 int parent[MAXN]; // 并查集数组 bool compare(Edge a, Edge b) { return a.weight < b.weight; } int findParent(int x) { if (parent[x] == x) { return x; } return parent[x] = findParent(parent[x]); } void unionSet(int x, int y) { int xParent = findParent(x); int yParent = findParent(y); if (xParent != yParent) { parent[yParent] = xParent; } } int kruskal(vector<Edge>& edges, int n) { sort(edges.begin(), edges.end(), compare); int minCost = 0; // 最小生成树的总权值 for (int i = 0; i < n; ++i) { parent[i] = i; // 初始化并查集数组 } for (auto& edge : edges) { int u = edge.u; int v = edge.v; int weight = edge.weight; // 如果顶点u和顶点v不属于同一个连通分量,则将该边加入到最小生成树中 if (findParent(u) != findParent(v)) { unionSet(u, v); minCost += weight; } } return minCost; } int main() { int n, m; // 顶点数和边数 cin >> n >> m; vector<Edge> edges; // 读取边的信息 for (int i = 0; i < m; ++i) { int u, v, w; // 边的两个顶点及其权值 cin >> u >> v >> w; edges.push_back(Edge(u, v, w)); } int minCost = kruskal(edges, n); cout << "最小生成树的权值之和为:" << minCost << endl; return 0; }
上記のコード例を通じて、Prim のアルゴリズムと Kruskal のアルゴリズムを使用して、C の最小スパニング ツリー問題を解決できます。実際のアプリケーションでは、特定の状況に応じて問題を解決するために適切なアルゴリズムを選択できます。これらのアルゴリズムの時間計算量はそれぞれ O(ElogV) と O(ElogE) です。ここで、V は頂点の数、E はエッジの数です。したがって、大規模なグラフを処理する場合にも、より良い結果を達成できます。
以上がC++ で最小スパニング ツリー アルゴリズムを使用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Cでは、文字列でCharタイプが使用されます。1。単一の文字を保存します。 2。配列を使用して文字列を表し、ヌルターミネーターで終了します。 3。文字列操作関数を介して動作します。 4.キーボードから文字列を読み取りまたは出力します。

言語のマルチスレッドは、プログラムの効率を大幅に改善できます。 C言語でマルチスレッドを実装する4つの主な方法があります。独立したプロセスを作成します。独立して実行される複数のプロセスを作成します。各プロセスには独自のメモリスペースがあります。擬似マルチスレッド:同じメモリ空間を共有して交互に実行するプロセスで複数の実行ストリームを作成します。マルチスレッドライブラリ:pthreadsなどのマルチスレッドライブラリを使用して、スレッドを作成および管理し、リッチスレッド操作機能を提供します。 Coroutine:タスクを小さなサブタスクに分割し、順番に実行する軽量のマルチスレッド実装。

C35の計算は、本質的に組み合わせ数学であり、5つの要素のうち3つから選択された組み合わせの数を表します。計算式はC53 = 5です! /(3! * 2!)。これは、ループで直接計算して効率を向上させ、オーバーフローを避けることができます。さらに、組み合わせの性質を理解し、効率的な計算方法をマスターすることは、確率統計、暗号化、アルゴリズム設計などの分野で多くの問題を解決するために重要です。

std :: uniqueは、コンテナ内の隣接する複製要素を削除し、最後まで動かし、最初の複製要素を指すイテレーターを返します。 STD ::距離は、2つの反復器間の距離、つまり、指す要素の数を計算します。これらの2つの機能は、コードを最適化して効率を改善するのに役立ちますが、隣接する複製要素をstd ::のみ取引するというような、注意すべき落とし穴もあります。 STD ::非ランダムアクセスイテレーターを扱う場合、距離は効率が低くなります。これらの機能とベストプラクティスを習得することにより、これら2つの機能の力を完全に活用できます。

C言語では、Snake命名法はコーディングスタイルの慣習であり、アンダースコアを使用して複数の単語を接続して可変名または関数名を形成して読みやすくします。編集と操作、長い命名、IDEサポートの問題、および歴史的な荷物を考慮する必要がありますが、それは影響しませんが。

CのRelease_Semaphore関数は、取得したセマフォをリリースするために使用され、他のスレッドまたはプロセスが共有リソースにアクセスできるようにします。セマフォのカウントを1増加し、ブロッキングスレッドが実行を継続できるようにします。

dev-c 4.9.9.2コンピレーションエラーとソリューションdev-c 4.9.9.2を使用してWindows 11システムでプログラムをコンパイルする場合、コンパイラレコードペインには次のエラーメッセージが表示されます。gcc.exe:internalerror:aborted(programcollect2)pleaseubmitafullbugreport.seeforintructions。最終的な「コンピレーションは成功しています」ですが、実際のプログラムは実行できず、エラーメッセージ「元のコードアーカイブはコンパイルできません」がポップアップします。これは通常、リンカーが収集されるためです

Cは、ハードウェアに近い制御機能とオブジェクト指向プログラミングの強力な機能を提供するため、システムプログラミングとハードウェアの相互作用に適しています。 1)cポインター、メモリ管理、ビット操作などの低レベルの機能、効率的なシステムレベル操作を実現できます。 2)ハードウェアの相互作用はデバイスドライバーを介して実装され、Cはこれらのドライバーを書き込み、ハードウェアデバイスとの通信を処理できます。
