NLP 用の Python を使用して複数の PDF ファイルからテキストを抽出して分析するにはどうすればよいですか?
NLP 用 Python を使用して複数の PDF ファイルからテキストを抽出して分析するにはどうすればよいですか?
要約:
ビッグデータ時代の到来により、自然言語処理 (NLP) は大量のテキスト データを解決する重要な手段の 1 つになりました。一般的な文書形式として PDF にはリッチ テキスト情報が含まれているため、PDF ファイル内のテキストをどのように抽出して分析するかが NLP の分野で重要なタスクとなっています。この記事では、Python プログラミング言語と関連する NLP ライブラリを使用して複数の PDF ファイル内のテキストを抽出および分析する方法を、具体的なコード例を示しながら紹介します。
- 準備
始める前に、Python と必要なライブラリ PyPDF2、nltk、pandas がインストールされていることを確認する必要があります。これらのライブラリは、pip コマンドを使用してインストールできます。
pip install PyPDF2 pip install nltk pip install pandas
- PDF テキスト抽出
Python には、PDF ファイルを処理するためのライブラリが多数用意されています。その中でも PyPDF2 は、抽出に使用できる強力なライブラリです。 PDFからのテキスト。以下は、単一の PDF ファイルからテキストを抽出する簡単なサンプル コードです。
import PyPDF2 def extract_text_from_pdf(file_path): with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfFileReader(file) text = "" for page_num in range(pdf_reader.numPages): page = pdf_reader.getPage(page_num) text += page.extractText() return text pdf_file_path = "example.pdf" text = extract_text_from_pdf(pdf_file_path) print(text)
- 複数の PDF ファイルからテキストをバッチ抽出します
複数の PDF ファイルがある場合、処理が必要な場合は、同様の方法を使用して、テキストをバッチで抽出できます。以下は、フォルダー内のすべての PDF ファイルのテキストを抽出し、結果をテキスト ファイルに保存するサンプル コードです:
import os def extract_text_from_folder(folder_path): text_dict = {} for file_name in os.listdir(folder_path): if file_name.endswith(".pdf"): file_path = os.path.join(folder_path, file_name) text = extract_text_from_pdf(file_path) text_dict[file_name] = text return text_dict pdf_folder_path = "pdf_folder" text_dict = extract_text_from_folder(pdf_folder_path) output_file_path = "output.txt" with open(output_file_path, 'w', encoding='utf-8') as file: for file_name, text in text_dict.items(): file.write(file_name + " ") file.write(text + " ")
- テキストの前処理と分析
テキストを抽出したらPDF ファイルからテキストを前処理して分析することができます。以下は、抽出されたテキストの単語の分割と単語の頻度の計算のサンプル コードです:
import nltk import pandas as pd from nltk.tokenize import word_tokenize nltk.download('punkt') def preprocess_text(text): tokens = word_tokenize(text) # 分词 tokens = [token.lower() for token in tokens if token.isalpha()] # 去除标点符号和数字,转换为小写 return tokens # 对提取的文本进行预处理和分析 all_tokens = [] for text in text_dict.values(): tokens = preprocess_text(text) all_tokens.extend(tokens) # 计算词频 word_freq = nltk.FreqDist(all_tokens) df = pd.DataFrame.from_dict(word_freq, orient='index', columns=['Frequency']) df.sort_values(by='Frequency', ascending=False, inplace=True) print(df.head(10))
概要:
Python プログラミング言語と関連する NLP ライブラリを使用することで、簡単に抽出して分析できます。複数の PDF ファイルからのテキスト。上記では具体的なコード例を示しています。読者の役に立つことを願っています。読者は、品詞のタグ付けやセンチメント分析など、実際のニーズに基づいてさらなるテキスト処理と分析を実行できます。
以上がNLP 用の Python を使用して複数の PDF ファイルからテキストを抽出して分析するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
