Pythonチャート描画の実践事例と経験の共有
Python チャート作成の実践事例と経験の共有
はじめに:
データ分析と視覚化がさまざまな分野で広く応用される中、Python は、強力なデータ処理および視覚化ツールであり、ますます注目と使用が高まっています。この記事では、Python チャート描画におけるいくつかの実践的なケースと経験を共有し、読者が特定のコード例を通じて Python 描画スキルとメソッドをよりよく習得できるようにします。
1. 折れ線グラフを描画する
折れ線グラフは、時間の経過に伴うデータの変化を表示する一般的なグラフの種類です。 Python の Matplotlib ライブラリを使用すると、さまざまなスタイルの折れ線グラフを簡単かつ迅速に描画できます。以下は折れ線グラフを描画するための簡単なサンプル コードです:
import matplotlib.pyplot as plt # 数据 x = [1, 2, 3, 4, 5] y = [10, 13, 15, 18, 20] # 绘制折线图 plt.plot(x, y, 'b-', label='line') # 设置标题和坐标轴标签 plt.title('Line Chart') plt.xlabel('X axis') plt.ylabel('Y axis') # 显示图例 plt.legend() # 显示图表 plt.show()
2. 棒グラフの描画
ヒストグラムは、異なるカテゴリまたはグループ間の数値を比較するのに適しています。 Python では、Matplotlib ライブラリの bar
関数を使用して棒グラフを簡単に描画できます。以下はヒストグラムを描画するための簡単なサンプル コードです:
import matplotlib.pyplot as plt # 数据 x = [1, 2, 3, 4, 5] y = [10, 13, 15, 18, 20] # 绘制柱状图 plt.bar(x, y) # 设置标题和坐标轴标签 plt.title('Bar Chart') plt.xlabel('X axis') plt.ylabel('Y axis') # 显示图表 plt.show()
3. 散布図の描画
散布図は 2 つの変数間の関係を示すために使用され、データの観察に適しています。分布と傾向。 Python の Matplotlib ライブラリは、散布図を描画するための scatter
関数を提供します。以下は、散布図を描画するための簡単なサンプル コードです:
import matplotlib.pyplot as plt # 数据 x = [1, 2, 3, 4, 5] y = [10, 13, 15, 18, 20] # 绘制散点图 plt.scatter(x, y) # 设置标题和坐标轴标签 plt.title('Scatter Plot') plt.xlabel('X axis') plt.ylabel('Y axis') # 显示图表 plt.show()
4. 円グラフの描画
円グラフは、さまざまなカテゴリの比率を表示するために使用されるグラフの一種です。 Python で Matplotlib ライブラリの pie
関数を使用すると、円グラフを簡単に描画できます。以下は、円グラフを描画するための簡単なサンプル コードです:
import matplotlib.pyplot as plt # 数据 labels = ['A', 'B', 'C', 'D', 'E'] sizes = [15, 30, 20, 10, 25] # 绘制饼图 plt.pie(sizes, labels=labels, autopct='%1.1f%%') # 设置标题 plt.title('Pie Chart') # 显示图表 plt.show()
概要:
この記事では、Python でグラフを描画するための一般的な実践例と経験の共有を紹介し、特定のコードを通じて読者を支援します。例 さまざまなチャートを描画するテクニックと方法をよりよく理解し、習得します。もちろん、上記の例は氷山の一角にすぎず、Python にはデータ視覚化に使用できる他にも多くの強力なライブラリや関数があります。この記事を共有することで、読者の皆様がデータ分析と可視化の能力をさらに向上できることを願っています。
以上がPythonチャート描画の実践事例と経験の共有の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

MINIOオブジェクトストレージ:CENTOSシステムの下での高性能展開Minioは、Amazons3と互換性のあるGO言語に基づいて開発された高性能の分散オブジェクトストレージシステムです。 Java、Python、JavaScript、Goなど、さまざまなクライアント言語をサポートしています。この記事では、CentosシステムへのMinioのインストールと互換性を簡単に紹介します。 Centosバージョンの互換性Minioは、Centos7.9を含むがこれらに限定されない複数のCentosバージョンで検証されています。

Pytorchの分散トレーニングでは、Centosシステムでトレーニングには次の手順が必要です。Pytorchのインストール:PythonとPipがCentosシステムにインストールされていることです。 CUDAバージョンに応じて、Pytorchの公式Webサイトから適切なインストールコマンドを入手してください。 CPUのみのトレーニングには、次のコマンドを使用できます。PipinstalltorchtorchtorchvisionTorchaudioGPUサポートが必要な場合は、CUDAとCUDNNの対応するバージョンがインストールされ、インストールに対応するPytorchバージョンを使用してください。分散環境構成:分散トレーニングには、通常、複数のマシンまたは単一マシンの複数GPUが必要です。場所

PytorchをCentosシステムにインストールする場合、適切なバージョンを慎重に選択し、次の重要な要因を検討する必要があります。1。システム環境互換性:オペレーティングシステム:Centos7以上を使用することをお勧めします。 Cuda and Cudnn:PytorchバージョンとCudaバージョンは密接に関連しています。たとえば、pytorch1.9.0にはcuda11.1が必要ですが、pytorch2.0.1にはcuda11.3が必要です。 CUDNNバージョンは、CUDAバージョンとも一致する必要があります。 Pytorchバージョンを選択する前に、互換性のあるCUDAおよびCUDNNバージョンがインストールされていることを確認してください。 Pythonバージョン:Pytorch公式支店

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。
