Python描画チャートのオリジナル例と事例
Python チャート作成のオリジナルの例と事例分析
はじめに:
Python は、強力なデータ処理機能と視覚化機能を備えた、広く使用されているプログラミング言語です。チャートは、データ分析、科学研究、ビジネス上の意思決定などの分野で最も一般的な視覚化ツールの 1 つです。この記事では、Python を使用してグラフを描画する方法を具体的な例と事例分析を通して紹介し、詳細なコード例を添付します。
1. 折れ線グラフの例
折れ線グラフは、時間の経過に伴うデータの変化やその他の変数の傾向を示すのに適した、一般的に使用される視覚表現です。
例 1:
企業の売上が過去 1 年間に記録され、折れ線グラフを使用して売上の時間の経過に伴う変化を示すとします。
import matplotlib.pyplot as plt # 销售额数据 sales = [100, 150, 120, 180, 200, 250, 300, 280, 350, 400, 380, 450] # 月份数据 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] # 绘制折线图 plt.plot(months, sales) plt.title('Sales Trend') plt.xlabel('Month') plt.ylabel('Sales ($)') plt.show()
上記のコードを実行して、経時的な売上傾向を示す折れ線グラフを生成します。
例 2:
例 1 に基づいて、さまざまな製品ラインの売上も記録したため、各製品ラインの傾向を示す必要があります。
import matplotlib.pyplot as plt # 产品销售额数据 product_a = [100, 150, 120, 180, 200, 250, 300, 280, 350, 400, 380, 450] product_b = [80, 120, 90, 150, 170, 200, 230, 210, 260, 300, 280, 330] product_c = [70, 90, 80, 120, 150, 180, 200, 190, 220, 270, 250, 300] # 月份数据 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] # 绘制折线图 plt.plot(months, product_a, label='Product A') plt.plot(months, product_b, label='Product B') plt.plot(months, product_c, label='Product C') plt.title('Sales Trend by Product') plt.xlabel('Month') plt.ylabel('Sales ($)') plt.legend() plt.show()
上記のコードを実行して、各製品ラインの長期にわたる売上傾向を示す折れ線グラフを生成します。凡例を通して、3 つの製品それぞれの売上を明確に確認できます。
2. ヒストグラムの例
ヒストグラムは一般的に使用される視覚表現であり、異なるカテゴリまたは変数間の値を比較するのに適しています。
例 3:
会社の年間売上が記録されており、棒グラフを使用して年間売上を表示すると仮定します。
import matplotlib.pyplot as plt # 销售额数据 sales = [1000, 1200, 1500, 1800, 2000] # 年份数据 years = ['2014', '2015', '2016', '2017', '2018'] # 绘制柱状图 plt.bar(years, sales) plt.title('Annual Sales') plt.xlabel('Year') plt.ylabel('Sales ($)') plt.show()
上記のコードを実行して、年間売上高を示すヒストグラムを生成します。
例 4:
例 3 に基づいて、さまざまな製品ラインの売上も記録しました。各製品ラインの年間売上を示す必要があります。
import matplotlib.pyplot as plt import numpy as np # 产品销售额数据 product_a = [1000, 1200, 1500, 1800, 2000] product_b = [800, 900, 1200, 1500, 1700] product_c = [600, 800, 1000, 1200, 1400] # 年份数据 years = ['2014', '2015', '2016', '2017', '2018'] # 绘制柱状图 x = np.arange(len(years)) width = 0.2 plt.bar(x - width, product_a, width, label='Product A') plt.bar(x, product_b, width, label='Product B') plt.bar(x + width, product_c, width, label='Product C') plt.title('Annual Sales by Product') plt.xlabel('Year') plt.ylabel('Sales ($)') plt.xticks(x, years) plt.legend() plt.show()
上記のコードを実行して、各製品ラインの年間売上を示すヒストグラムを生成します。異なる色の列と凡例を通じて、各年の各製品の売上を明確に比較できます。
結論:
グラフはデータ視覚化の重要な部分であり、データをより深く理解し、分析するのに役立ちます。 Python は豊富で強力な描画ライブラリを提供します。この記事では、Python を使用して折れ線グラフと縦棒グラフを描画する方法を例と事例分析を通じて紹介し、具体的なコード例を示します。この記事のガイダンスを通じて、読者がデータ視覚化に Python をより適切に使用できるようになることを願っています。
以上がPython描画チャートのオリジナル例と事例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Google AI は、Gemini 1.5 Pro 大規模言語モデル (LLM) を皮切りに、拡張コンテキスト ウィンドウとコスト削減機能へのアクセスを開発者に提供し始めました。以前は待機リストを通じて利用可能でしたが、完全な 200 万トークンのコンテキストウィンドウが利用可能になりました

Deepseek Xiaomiをダウンロードする方法は? Xiaomi App Storeで「Deepseek」を検索します。ニーズ(検索ファイル、データ分析)を特定し、DeepSeek関数を含む対応するツール(ファイルマネージャー、データ分析ソフトウェアなど)を見つけます。

DeepSeekを効果的に使用する鍵は、質問を明確にすることです。質問を直接および具体的に表現してください。特定の詳細と背景情報を提供します。複雑な問い合わせのために、複数の角度と反論の意見が含まれています。コードのパフォーマンスボトルネックなどの特定の側面に焦点を当てます。あなたが得る答えについて批判的な考えを維持し、あなたの専門知識に基づいて判断を下します。

DeepSeekに付属する検索機能を使用するだけです。ただし、不人気で最新の情報または考慮する必要がある検索の場合、キーワードを調整したり、より具体的な説明を使用したり、他のリアルタイム情報源と組み合わせたり、DeepSeekが必要なツールであることを理解する必要があります。アクティブで明確で洗練された検索戦略。

DeepSeekはプログラミング言語ではなく、深い検索の概念です。 DeepSeekの実装には、既存の言語に基づいて選択が必要です。さまざまなアプリケーションシナリオでは、適切な言語とアルゴリズムを選択し、機械学習技術を組み合わせる必要があります。コードの品質、保守性、テストが重要です。適切なプログラミング言語、アルゴリズム、ツールをお客様のニーズに応じて選択し、高品質のコードを作成することにより、DeepSeekを正常に実装できます。

質問:DeepSeekは会計に利用できますか?回答:いいえ、それは財務データの分析に使用できるデータマイニングおよび分析ツールですが、会計レコードと会計ソフトウェアの生成機能をレポートしていません。 DeepSeekを使用して財務データを分析するには、データ構造、アルゴリズム、DeepSeek APIの知識を持つデータを処理するためにコードを作成する必要があります。

Python は、学習の容易さと強力な機能により、初心者にとって理想的なプログラミング入門言語です。その基本は次のとおりです。 変数: データ (数値、文字列、リストなど) を保存するために使用されます。データ型: 変数内のデータの型 (整数、浮動小数点など) を定義します。演算子: 数学的な演算と比較に使用されます。制御フロー: コード実行のフロー (条件文、ループ) を制御します。

Python は、問題解決の初心者に力を与えます。ユーザーフレンドリーな構文、広範なライブラリ、変数、条件文、ループによる効率的なコード開発などの機能を備えています。データの管理からプログラム フローの制御、反復的なタスクの実行まで、Python が提供します
