ホームページ テクノロジー周辺機器 AI ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル

ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル

Sep 29, 2023 pm 08:13 PM
書類 モデル kosmos

現在の明らかな傾向は、印象的な言語出力を生成できる数百億、数千億のパラメーターを備えた、より大規模で複雑なモデルを構築する方向です。

#ただし、既存の大規模言語モデルは主に文字情報に集中し、視覚情報を理解できない。

マルチモーダル大規模言語モデル (MLLM) の分野の進歩は、この制限に対処することを目的としています。MLLM は、視覚情報とテキスト情報を単一の Transformer ベースのモデルに融合し、モデルを次のようにします。両方のモダリティに基づいてコンテンツを学習および生成できます。

MLLM は、自然な画像理解やテキスト画像理解など、さまざまな実用的なアプリケーションでの可能性を示しています。これらのモデルは、マルチモーダルな問題を処理するための共通インターフェイスとして言語モデリングを活用し、テキストおよび視覚的な入力に基づいて応答を処理および生成できるようにします。ただし、現在は主に自然画像用の低解像度 MLLM に重点が置かれており、テキストに関する研究は比較的少ないです。 -濃密な画像。したがって、テキスト画像をトレーニングプロセスに組み込んでモデルを開発することにより、大規模なマルチモーダル事前トレーニングを活用してテキスト画像を処理することがMLLM研究の重要な方向性となっています

テキストと視覚情報に基づいて、高解像度のテキスト密度の高い画像を含むマルチモーダル アプリケーションの新たな可能性を開くことができます。

写真

論文アドレス: https://arxiv.org/abs/2309.11419ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル##KOSMOS-2.5 は、テキスト密度の高い画像に基づくマルチモーダル大規模言語モデルです。KOSMOS-2 に基づいて開発され、テキスト密度の高い画像のマルチモーダルな読み取りおよび理解機能を強調しています (マルチモーダル読み書きモデル)。

#提案されたモデルは、テキスト中心の画像を理解する際の優れたパフォーマンスを強調し、視覚とテキストの間のギャップを橋渡しします

同時に、これは、以前のエンコーダ/デコーダ アーキテクチャから純粋なデコーダ アーキテクチャへのタスク パラダイムの進化でもあります。

KOSMOS-2.5 は、テキストリッチな画像をターゲットとします。シームレスなビジュアルおよびテキスト データ処理を可能にし、画像の内容を理解し、構造化されたテキストの説明を生成します。

図 1: KOSMOS-2.5 の概要

KOSMOS-2.5 はマルチモーダル モデルです図 1 に示すように、統合フレームワークを使用して 2 つの密接に関連するタスクを処理することを目的としています。ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル

最初のタスクには、空間認識テキスト ブロックの生成が含まれます。つまり、コンテンツと座標フレームを同時に生成します。テキストブロックの。 書き換える必要がある内容は次のとおりです。 最初のタスクには、空間認識テキスト ブロックの生成が含まれます。つまり、テキスト ブロックと座標ボックスのコンテンツを同時に生成します。

#2 番目のタスクには、Markdown 形式の使用が含まれます。構造化テキスト出力を生成し、さまざまなスタイルと構造をキャプチャします。

図 2: KOSMOS-2.5 アーキテクチャ図

図 2 に示すように、どちらのタスクも共有の Transformer アーキテクチャとタスク固有のプロンプトを使用します。ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル

KOSMOS-2.5 は ViT (Vision Transformer) に基づいています。 ) ビジョン エンコーダーは、リサンプリング モジュールを介して接続された、Transformer アーキテクチャに基づくデコーダーと結合されます。

#図 3: トレーニング前のデータ セット

このモデルをトレーニングするために、作成者は図 3 に示すように、データ セットのサイズは 3 億 2,440 万個です。

ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル

#図 4: 境界ボックスを使用したテキスト行のトレーニング サンプルの例

ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル図 5: マークダウン形式のトレーニング サンプルの例

このデータ セットにはさまざまなデータが含まれていますタイプ 境界ボックスを含むテキスト行とマークダウン形式のプレーンテキストを含むテキスト密度の高い画像。図 4 と図 5 は、トレーニング サンプルの視覚化例です。

ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデルこのマルチタスク トレーニング方法は、KOSMOS-2.5 の全体的なマルチモーダル機能を向上させます

ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル[図 6] エンドツーエンドのドキュメントレベルのテキスト認識実験

ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル図 7: 画像から Markdown 形式のテキストを生成する実験

図 6 と 7 に示すように、KOSMOS-2.5 は、エンドツーエンドのドキュメントレベルのテキスト認識と画像からの Markdown 形式のテキストの生成という 2 つのタスクで評価されます。 。

KOSMOS-2.5 は、実験結果が示すように、テキスト中心の画像タスクの処理に優れています。

ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル 図 8: KOSMOS-2.5の入出力サンプル表示

KOSMOS-2.5は、数ショット学習およびゼロショット学習シナリオで有望な機能を示しており、実用的な多目的ツールになります。テキストの多い画像を処理するアプリケーション。これは、テキストの多い画像を効果的に処理し、数回のショットとゼロショットの学習状況の両方で有望な機能を発揮できる多用途ツールと考えることができます。チューニングは、モデルの幅広い適用能力を実現する有望な方法です。

より広範な研究分野において、重要な方向性は、モデル パラメーターを拡張する機能をさらに開発することにあります。

タスクの範囲と複雑さが拡大し続ける中、テキスト集約型のマルチモーダル モデルの開発には、大量のデータを処理できるようにモデルをスケーリングすることが重要です。

最終的な目標は、ビジュアル データとテキスト データを効果的に解釈し、テキストを多用するマルチモーダル タスク全体にうまく汎用化できるモデルを開発することです。

内容を書き換える場合は中国語に書き直す必要があり、元の文章は表示する必要はありません

https://arxiv.org/abs/ 2309.11419

以上がドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデルの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

オックスフォード大学の最新情報!ミッキー:2D画像を3D SOTAでマッチング! (CVPR\'24) オックスフォード大学の最新情報!ミッキー:2D画像を3D SOTAでマッチング! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

前に書かれたプロジェクトのリンク: https://nianticlabs.github.io/mickey/ 2 枚の写真が与えられた場合、それらの写真間の対応関係を確立することで、それらの間のカメラのポーズを推定できます。通常、これらの対応は 2D 対 2D であり、推定されたポーズはスケール不定です。いつでもどこでもインスタント拡張現実などの一部のアプリケーションでは、スケール メトリクスの姿勢推定が必要なため、スケールを回復するために外部深度推定器に依存します。この論文では、3D カメラ空間でのメトリックの対応を予測できるキーポイント マッチング プロセスである MicKey を提案します。画像全体の 3D 座標マッチングを学習することで、相対的なメトリックを推測できるようになります。

Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Apr 29, 2024 pm 04:55 PM

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

See all articles