用php读取xml数据_PHP

Jun 01, 2016 pm 12:34 PM
position xml 関数 データ 読む

摘要: 今天工作上碰到一个问题 由于我们的项目数据太少 所以需要从web search那边借调数据,他们只给我们提供了一个xml的接口。因此,我们需要把xml的数据转化成html呈现给大家。由于项目是基于php的,所以就摒弃了用js来读取xml选择了继续使用php。不过,我以前从来没有做过此类的尝试 所以找了很多网上资料同时参照了php的工作手册,发现在php4的环境下 用parser函数是一个比较好的选择(当然也可以用dom 但是需要对服务器重新进行配置 php5对dom支持得比较好)。

虽然以前没有接触过此类问题,但是还是很快就解决了,不过在解决和摸索的过程中发现网上关于此类的资料虽然不少,但是参差不齐,很多描述不是很详细,还是操作手册比较管用。

好了,言归正传:

parser是php内置的一个用来处理xml的解析器,它的工作由三个事件组成:起始标签、 读取数据、结束标签。

也就是说在对xml进行处理的时候每当遇到起始标签、数据和结束标签的时候函数会做相应的动作来完成对xml数据的转换。

php中对xml读取的相关函数的介绍:

引用:

--------------------------------------------------------------------------------

对象 XML解析函数 描述
元素 xml_set_element_handler() 元素的开始和结束
字符数据 xml_set_character_data_handler() 字符数据的开始
外部实体 xml_set_external_entity_ref_handler() 外部实体出现
未解析外部实体 xml_set_unparsed_entity_decl_handler() 未解析的外部实体出现
处理指令 xml_set_processing_instruction_handler() 处理指令的出现
记法声明 xml_set_notation_decl_handler() 记法声明的出现
默认 xml_set_default_handler() 其它没有指定处理函数的事件

--------------------------------------------------------------------------------

下面就给大家举一个小小的例子用parser函数来读取xml数据:

$parser = xml_parser_create(); //创建一个parser编辑器
xml_set_element_handler($parser, "startElement", "endElement");//设立标签触发时的相应函数 这里分别为startElement和endElenment
xml_set_character_data_handler($parser, "characterData");//设立数据读取时的相应函数
$xml_file="1.xml";//指定所要读取的xml文件,可以是url
$filehandler = fopen($xml_file, "r");//打开文件

while ($data = fread($filehandler, 4096))
{
xml_parse($parser, $data, feof($filehandler));
}//每次取出4096个字节进行处理

fclose($filehandler);
xml_parser_free($parser);//关闭和释放parser解析器

$name=false;
$position=false;
function startElement($parser_instance, $element_name, $attrs) //起始标签事件的函数
{
global $name,$position;
if($element_name=="NAME")
{
$name=true;
$position=false;
echo "名字:";
}
if($element_name=="POSITION")
{$name=false;
$position=true;
echo "职位:";
}
}

function characterData($parser_instance, $xml_data) //读取数据时的函数
{
global $name,$position;
if($position)
echo $xml_data."
";
if($name)
echo $xml_data."
";
}

function endElement($parser_instance, $element_name) //结束标签事件的函数
{
global $name,$position;
$name=false;
$position=false;
}

?>
xml文件代码如下:






张三
经理



李四
助理



这个程序的结果如下:

引用:
--------------------------------------------------------------------------------

名字:张三 职位:经理
名字:李四 职位:助理

-------------------------------------------------------------------------------


このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 Apr 29, 2024 pm 06:55 PM

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

iPhoneのセルラーデータインターネット速度が遅い:修正 iPhoneのセルラーデータインターネット速度が遅い:修正 May 03, 2024 pm 09:01 PM

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 May 07, 2024 pm 05:00 PM

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

golang 関数で新しい関数を動的に作成するためのヒント golang 関数で新しい関数を動的に作成するためのヒント Apr 25, 2024 pm 02:39 PM

Go 言語は、クロージャとリフレクションという 2 つの動的関数作成テクノロジを提供します。クロージャを使用すると、クロージャ スコープ内の変数にアクセスでき、リフレクションでは FuncOf 関数を使用して新しい関数を作成できます。これらのテクノロジーは、HTTP ルーターのカスタマイズ、高度にカスタマイズ可能なシステムの実装、プラグイン可能なコンポーネントの構築に役立ちます。

C++ 関数の命名におけるパラメーターの順序に関する考慮事項 C++ 関数の命名におけるパラメーターの順序に関する考慮事項 Apr 24, 2024 pm 04:21 PM

C++ 関数の名前付けでは、読みやすさを向上させ、エラーを減らし、リファクタリングを容易にするために、パラメーターの順序を考慮することが重要です。一般的なパラメータの順序規則には、アクション-オブジェクト、オブジェクト-アクション、意味論的な意味、および標準ライブラリへの準拠が含まれます。最適な順序は、関数の目的、パラメーターの種類、潜在的な混乱、および言語規約によって異なります。

Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Llama 70B を実行するシングル カードはデュアル カードより高速、Microsoft は FP6 を A100 オープンソースに強制導入 Apr 29, 2024 pm 04:55 PM

FP8 以下の浮動小数点数値化精度は、もはや H100 の「特許」ではありません。 Lao Huang は誰もが INT8/INT4 を使用できるようにしたいと考え、Microsoft DeepSpeed チームは NVIDIA からの公式サポートなしで A100 上で FP6 の実行を開始しました。テスト結果は、A100 での新しい方式 TC-FPx の FP6 量子化が INT4 に近いか、場合によってはそれよりも高速であり、後者よりも精度が高いことを示しています。これに加えて、エンドツーエンドの大規模モデルのサポートもあり、オープンソース化され、DeepSpeed などの深層学習推論フレームワークに統合されています。この結果は、大規模モデルの高速化にも即座に影響します。このフレームワークでは、シングル カードを使用して Llama を実行すると、スループットはデュアル カードのスループットの 2.65 倍になります。 1つ

Open-Sora の包括的なオープンソース アップグレード: 16 秒のビデオ生成と 720p 解像度をサポート Open-Sora の包括的なオープンソース アップグレード: 16 秒のビデオ生成と 720p 解像度をサポート Apr 25, 2024 pm 02:55 PM

Open-Sora は、オープン ソース コミュニティで密かに更新され、最大 720p の解像度で最大 16 秒のビデオ生成をサポートし、テキストから画像へ、テキストからビデオへ、画像からビデオへの変換を処理できます。あらゆるアスペクト比のビデオ間の処理や、無限に長いビデオの生成ニーズにも対応します。試してみましょう。横画面のクリスマス雪景色を生成し、B サイトに投稿してから縦画面を生成し、Douyin を使用して 16 秒のビデオを生成します。これで、誰もが脚本に夢中になる生活を送ることができます。ガイダンス GitHub: https://github.com/hpcaitech/Open-Sora さらにすごいのは、Open-Sora は、最新のモデル アーキテクチャ、最新のモデルの重み、マルチタイム/解像度/長期を含め、依然としてすべてオープン ソースであるということです。

See all articles