画像圧縮は、画像の保存および送信時に一般的に使用される技術方法であり、画像の保存スペースを削減し、画像の送信を高速化できます。画像圧縮の目的は、人間の目に受け入れられる画像の視覚的な品質を維持しながら、画像ファイルのサイズを可能な限り縮小することです。ただし、画像圧縮プロセス中に、ある程度の歪みが発生することがよくあります。この記事では、画像圧縮における歪み制御の問題について説明し、いくつかの具体的なコード例を示します。
次に、簡単な JPEG 圧縮コードの例を示します。
import numpy as np import cv2 def jpeg_compression(image, quality): # 将图像分成若干个8×8的小块 height, width, _ = image.shape blocks = [] for i in range(height // 8): for j in range(width // 8): block = image[i*8:(i+1)*8, j*8:(j+1)*8, :] blocks.append(block) # 对每个小块进行DCT变换,并进行量化和编码 compressed_blocks = [] for block in blocks: # 进行DCT变换 dct_block = cv2.dct(block.astype(np.float32)) # 进行量化和编码 quantized_block = np.round(dct_block / quality) compressed_blocks.append(quantized_block) # 将压缩后的小块重组成图像 compressed_image = np.zeros_like(image) for i in range(height // 8): for j in range(width // 8): block = compressed_blocks[i*(width//8)+j] compressed_image[i*8:(i+1)*8, j*8:(j+1)*8, :] = cv2.idct(block) return compressed_image.astype(np.uint8)
上記のコードでは、quality
パラメータは圧縮品質を 1 ~ 100 の範囲で表します。 、値が小さいほど圧縮品質は低くなり、歪みが大きくなります。
さらに、画像圧縮によって生じる歪みを軽減するために、いくつかの強調アルゴリズムも使用できます。たとえば、JPEG 圧縮アルゴリズムでは、知覚ベースの量子化テーブルを使用して歪みを制御したり、DCT 変換の前に画像を色空間に変換したりして、圧縮効果を向上させることができます。
要約すると、画像圧縮における歪み制御の問題は注意が必要な問題です。実際のアプリケーションでは、必要な画質と圧縮率を達成するために、特定のニーズに応じて適切な圧縮アルゴリズムとパラメータを選択する必要があります。同時に、量子化テーブルの調整や色空間変換などの拡張アルゴリズムを使用することで、圧縮効果をある程度向上させることができます。
以上が画像圧縮における歪み制御の問題の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。