ホームページ テクノロジー周辺機器 AI 人工知能技術におけるプライバシー保護の問題

人工知能技術におけるプライバシー保護の問題

Oct 09, 2023 pm 12:36 PM
AI テクノロジー プライバシー保護

人工知能技術におけるプライバシー保護の問題

人工知能技術におけるプライバシー保護の問題

人工知能 (Artificial Intelligence、AI) 技術の発展に伴い、私たちの生活はインテリジェント システムにますます依存するようになりました。そして設備。スマートフォン、スマートホーム、自動運転車など、人工知能技術は徐々に私たちの日常生活に浸透しつつあります。しかし、私たちは人工知能技術の利便性を享受する一方で、プライバシー保護の問題にも直面しています。

プライバシー保護とは、個人の機密情報を許可なく収集、使用、開示してはならないことを意味します。しかし、人工知能テクノロジーはモデルのトレーニングや機能の実装に大量のデータを必要とすることが多く、プライバシー保護との衝突につながります。以下では、人工知能テクノロジーにおけるプライバシー保護の問題について説明し、解決策を示す具体的なコード例を示します。

  1. データ収集とプライバシー保護

人工知能テクノロジーにおいて、データ収集は不可欠なステップです。ただし、ユーザーの明示的な許可とインフォームドコンセントなしに機密の個人データを収集すると、プライバシーの侵害となる可能性があります。コード例では、データ収集中にユーザーのプライバシーを保護する方法を示します。

# 导入隐私保护库
import privacylib

# 定义数据收集函数,此处仅作示例
def collect_data(user_id, data):
    # 对数据进行匿名化处理
    anonymized_data = privacylib.anonymize(data)
    
    # 将匿名化后的数据存储在数据库中
    privacylib.store_data(user_id, anonymized_data)
    
    return "Data collected successfully"

# 用户许可授权
def grant_permission(user_id):
    # 检查用户是否已经授权
    if privacylib.check_permission(user_id):
        return "User has already granted permission"
    
    # 向用户展示隐私政策和数据收集用途
    privacylib.show_privacy_policy()
    
    # 用户同意授权
    privacylib.set_permission(user_id)
    
    return "Permission granted"

# 主程序
def main():
    user_id = privacylib.get_user_id()
    
    permission_status = grant_permission(user_id)
    
    if permission_status == "Permission granted":
        data = privacylib.collect_data(user_id)
        print(collect_data(user_id, data))
    else:
        print("Data collection failed: permission not granted")
ログイン後にコピー

上記のコード例では、privacylib というプライバシー保護ライブラリを使用しました。このライブラリは、データの匿名化やデータ ストレージなどのプライバシー保護機能を提供します。データ収集機能 collect_data では、ユーザーのプライバシーを保護するために、ユーザーのデータを匿名化し、匿名化されたデータをデータベースに保存します。同時に、grant_permission 関数でプライバシー ポリシーとデータ収集の目的をユーザーに表示し、ユーザーが承認に同意した場合にのみデータ収集操作を実行します。

  1. モデルのトレーニングとプライバシー保護

人工知能テクノロジーにおいて、モデルのトレーニングはインテリジェントな機能を実現するための重要なステップです。ただし、モデルのトレーニングに必要な大量のデータには、個人を特定できる情報など、ユーザーに関する機密情報が含まれる場合があります。ユーザーのプライバシーを保護するために、モデルのトレーニング中にデータのセキュリティを確保するために何らかの措置を講じる必要があります。

# 导入隐私保护库
import privacylib

# 加载训练数据
def load_train_data():
    # 从数据库中获取训练数据
    train_data = privacylib.load_data()
    
    # 对训练数据进行匿名化处理
    anonymized_data = privacylib.anonymize(train_data)
    
    return anonymized_data

# 模型训练
def train_model(data):
    # 模型训练代码,此处仅作示例
    model = privacylib.train(data)
    
    return model

# 主程序
def main():
    train_data = load_train_data()
    model = train_model(train_data)
    
    # 使用训练好的模型进行预测等功能
    predict_result = privacylib.predict(model, test_data)
    
    print("Prediction result:", predict_result)
ログイン後にコピー

上記のコード例では、privacylib ライブラリの load_data 関数を使用してデータベースからデータを取得し、トレーニング データをロードする前にデータを匿名化します。対処する。このようにして、モデルのトレーニング中に機密情報が公開されることはありません。次に、匿名化されたデータをモデルのトレーニングに使用して、ユーザーのプライバシーのセキュリティを確保します。

要約:

人工知能技術の発展は、私たちに利便性と知能をもたらしましたが、プライバシー保護の面でも課題をもたらしました。データ収集とモデルのトレーニングのプロセス中に、ユーザーのプライバシーのセキュリティを確保するためにプライバシー保護措置を講じる必要があります。プライバシー保護ライブラリや匿名化処理などの手法を導入することで、人工知能技術におけるプライバシー問題を効果的に解決できます。ただし、プライバシー保護は複雑な問題であり、インテリジェンスとプライバシー保護に対する高まる需要を満たすには、継続的な研究と改善が必要です。

以上が人工知能技術におけるプライバシー保護の問題の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

GenAI および LLM の技術面接に関する 7 つのクールな質問 GenAI および LLM の技術面接に関する 7 つのクールな質問 Jun 07, 2024 am 10:06 AM

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

VSCode フロントエンド開発の新時代: 強く推奨される 12 の AI コード アシスタント VSCode フロントエンド開発の新時代: 強く推奨される 12 の AI コード アシスタント Jun 11, 2024 pm 07:47 PM

フロントエンド開発の世界では、VSCode はその強力な機能と豊富なプラグイン エコシステムにより、数多くの開発者に選ばれるツールとなっています。近年、人工知能技術の急速な発展に伴い、VSCode 上の AI コード アシスタントが登場し、開発者のコ​​ーディング効率が大幅に向上しました。 VSCode 上の AI コード アシスタントは雨後のキノコのように出現し、開発者のコ​​ーディング効率を大幅に向上させました。人工知能テクノロジーを使用してコードをインテリジェントに分析し、正確なコード補完、自動エラー修正、文法チェックなどの機能を提供することで、コーディング プロセス中の開発者のエラーや退屈な手作業を大幅に削減します。今日は、プログラミングの旅に役立つ 12 個の VSCode フロントエンド開発 AI コード アシスタントをお勧めします。

See all articles