ホームページ テクノロジー周辺機器 AI チャットボットにおけるコンテキストのメンテナンスの問題

チャットボットにおけるコンテキストのメンテナンスの問題

Oct 09, 2023 pm 02:14 PM
コンテキストのメンテナンス

チャットボットにおけるコンテキストのメンテナンスの問題

チャットボットのコンテキスト保守の問題には特定のコード例が必要です

近年、チャットボットはさまざまな分野で広く使用されています。チャットボットは自然言語処理技術を使用してユーザーと会話し、関連する情報やサービスを提供します。ただし、チャットボットにおける重要な問題は、ユーザーの意図をよりよく理解し、ユーザーの質問に正確に回答できるようにするために、会話のコンテキストをどのように維持するかです。

従来のルールベースまたはテンプレートベースのチャットボットでは、通常、コンテキストの維持はユーザーの会話履歴記録を保存することで実現されます。ただし、この方法は、複雑な対話シナリオ、特に長期的な対話とコンテキストの蓄積に対処するのが困難です。この問題を解決するために、一部の研究者は、リカレント ニューラル ネットワーク (RNN) やトランスフォーマーを使用してコンテキスト情報をモデル化するなど、機械学習に基づくいくつかの方法を提案しています。

以下は、チャットボットでコンテキストのメンテナンスを実現する方法を示す簡単な例です。ユーザーが提供した都市名に基づいて都市の気象情報をクエリできる天気クエリ ロボットを開発するとします。

まず、いくつかの都市名とそれに対応する気象情報を含むデータセットを準備する必要があります。たとえば、このデータを「weather_data.csv」という名前の CSV ファイルに保存すると、各行に都市名と、「北京、晴れ」などの対応する気象情報が含まれます。

次に、Python を使用して簡単なチャットボットを作成し、リカレント ニューラル ネットワーク (RNN) を使用してコンテキストのメンテナンスを実現します。

まず、必要なライブラリをインポートする必要があります:

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, LSTM, Embedding
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
ログイン後にコピー

次に、データ セットをロードして前処理を実行できます:

data = pd.read_csv('weather_data.csv')
city_names = data['city'].tolist()
weather_conditions = data['weather'].tolist()

# 使用Tokenizer对城市名称进行编码
tokenizer = Tokenizer()
tokenizer.fit_on_texts(city_names)
city_sequences = tokenizer.texts_to_sequences(city_names)

# 构建输入和输出序列
input_sequences = []
output_sequences = []
for i in range(len(city_sequences)):
    input_sequences.append(city_sequences[i][:-1])
    output_sequences.append(city_sequences[i][1:])

# 对输入和输出序列进行填充
max_sequence_length = max([len(seq) for seq in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='post')
output_sequences = pad_sequences(output_sequences, maxlen=max_sequence_length, padding='post')

# 构建训练样本和测试样本
train_size = int(0.8 * len(city_names))
train_input = input_sequences[:train_size]
train_output = output_sequences[:train_size]
test_input = input_sequences[train_size:]
test_output = output_sequences[train_size:]

# 构建词汇表
vocab_size = len(tokenizer.word_index) + 1
ログイン後にコピー

次に、単純な Recurrent を定義できます。ニューラル ネットワーク (RNN) モデルとトレーニング:

model = tf.keras.Sequential([
    Embedding(vocab_size, 128, input_length=max_sequence_length-1),
    LSTM(128),
    Dense(vocab_size, activation='softmax')
])

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(train_input, train_output, epochs=10, verbose=1)

# 评估模型性能
_, train_accuracy = model.evaluate(train_input, train_output, verbose=0)
_, test_accuracy = model.evaluate(test_input, test_output, verbose=0)

print("Train Accuracy: %.2f%%" % (train_accuracy * 100))
print("Test Accuracy: %.2f%%" % (test_accuracy * 100))
ログイン後にコピー

最後に、トレーニングされたモデルを使用して予測を行うことができます。ユーザーが都市名を入力すると、チャットボットがその都市の気象情報を出力します。

def predict_weather(city_name):
    input_sequence = tokenizer.texts_to_sequences([city_name])
    input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length-1, padding='post')
    predicted_sequence = model.predict(input_sequence)
    predicted_word_index = np.argmax(predicted_sequence, axis=-1)
    predicted_word = tokenizer.index_word[predicted_word_index[0][0]]
    weather_info = data.loc[data['city'] == predicted_word, 'weather'].values[0]
    return weather_info

# 用户输入城市名称
city_name = input("请输入城市名称:")
weather_info = predict_weather(city_name)
print("该城市的天气信息是:%s" % weather_info)
ログイン後にコピー

上記のコード例を通じて、リカレント ニューラル ネットワーク (RNN) を使用してコンテキスト メンテナンスを実現する方法を確認できます。チャットボット。チャットボットは、ユーザーの入力に基づいて予測を行い、対応する気象情報を出力できます。ユーザーが複数の都市の天気について質問すると、ロボットは前の会話の文脈に基づいて質問に答え、正確な回答を提供します。

もちろん、上記の例は単なるデモンストレーションであり、実際のアプリケーションではさらに最適化や改善が必要になる場合があります。ただし、この例では、チャットボットのコンテキスト維持の問題を最初に理解し、機械学習技術を使用してそれを解決できます。

以上がチャットボットにおけるコンテキストのメンテナンスの問題の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

クリエイティブプロジェクトのための最高のAIアートジェネレーター(無料&有料) クリエイティブプロジェクトのための最高のAIアートジェネレーター(無料&有料) Apr 02, 2025 pm 06:10 PM

この記事では、トップAIアートジェネレーターをレビューし、その機能、創造的なプロジェクトへの適合性、価値について説明します。 Midjourneyを専門家にとって最高の価値として強調し、高品質でカスタマイズ可能なアートにDall-E 2を推奨しています。

ChatGpt 4 oは利用できますか? ChatGpt 4 oは利用できますか? Mar 28, 2025 pm 05:29 PM

CHATGPT 4は現在利用可能で広く使用されており、CHATGPT 3.5のような前任者と比較して、コンテキストを理解し、一貫した応答を生成することに大幅な改善を示しています。将来の開発には、よりパーソナライズされたインターが含まれる場合があります

Meta Llama 3.2を始めましょう - 分析Vidhya Meta Llama 3.2を始めましょう - 分析Vidhya Apr 11, 2025 pm 12:04 PM

メタのラマ3.2:マルチモーダルとモバイルAIの前進 メタは最近、ラマ3.2を発表しました。これは、モバイルデバイス向けに最適化された強力なビジョン機能と軽量テキストモデルを特徴とするAIの大幅な進歩です。 成功に基づいてo

ベストAIチャットボットが比較されました(chatgpt、gemini、claude& more) ベストAIチャットボットが比較されました(chatgpt、gemini、claude& more) Apr 02, 2025 pm 06:09 PM

この記事では、ChatGpt、Gemini、ClaudeなどのトップAIチャットボットを比較し、自然言語の処理と信頼性における独自の機能、カスタマイズオプション、パフォーマンスに焦点を当てています。

トップAIライティングアシスタントは、コンテンツの作成を後押しします トップAIライティングアシスタントは、コンテンツの作成を後押しします Apr 02, 2025 pm 06:11 PM

この記事では、Grammarly、Jasper、Copy.ai、Writesonic、RytrなどのトップAIライティングアシスタントについて説明し、コンテンツ作成のためのユニークな機能に焦点を当てています。 JasperがSEOの最適化に優れているのに対し、AIツールはトーンの維持に役立つと主張します

最高のAI音声ジェネレーターの選択:レビューされたトップオプション 最高のAI音声ジェネレーターの選択:レビューされたトップオプション Apr 02, 2025 pm 06:12 PM

この記事では、Google Cloud、Amazon Polly、Microsoft Azure、IBM Watson、DecriptなどのトップAI音声ジェネレーターをレビューし、機能、音声品質、さまざまなニーズへの適合性に焦点を当てています。

ファルコン3にアクセスする方法は? - 分析Vidhya ファルコン3にアクセスする方法は? - 分析Vidhya Mar 31, 2025 pm 04:41 PM

ファルコン3:革新的なオープンソースの大規模な言語モデル LLMSの称賛されたFalconシリーズの最新のイテレーションであるFalcon 3は、AIテクノロジーの重要な進歩を表しています。 Technology Innovation Institute(TII)によって開発されたこのオープン

AIエージェントを構築するためのトップ7エージェントRAGシステム AIエージェントを構築するためのトップ7エージェントRAGシステム Mar 31, 2025 pm 04:25 PM

2024年は、コンテンツ生成にLLMSを使用することから、内部の仕組みを理解することへの移行を目撃しました。 この調査は、AIエージェントの発見につながりました。これは、最小限の人間の介入でタスクと決定を処理する自律システムを処理しました。 buildin

See all articles