中小企業は中堅企業に比べて大規模な生成 AI モデルを導入する可能性が 3 倍高いことが調査で明らかになりました
Web3、仮想世界、ブロックチェーンなどのさまざまなテクノロジーを過剰に宣伝した後、企業経営者は生成型人工知能の波に備えています。人工知能はインターネットの誕生やデスクトップコンピュータの出現に匹敵する変化をもたらすと信じている人もいます。
しかし、より大きな能力にはより大きな責任が伴います。生成 AI は、報酬と同じくらい多くのリスクをもたらします。このテクノロジーは著作権と知的財産に関する法制度に挑戦し、サイバーとデータガバナンスの新たな脅威を生み出し、労働集約的な活動に「自動化不安」を引き起こしています。ステークホルダーの期待に応えるために、企業は迅速に行動する必要がありますが、データプライバシーやバイアスなどの分野で規制や倫理基準に違反しないように慎重に行動する必要があります。
運用面では、安全、効果的、信頼性の高い生成人工知能を設計するために、企業は人材を再構成し、テクノロジー企業とのパートナーシップを確立する必要があります。
主要なビジネス上の意思決定者の現在の考え方を評価するために、MIT Technology Review の Insights パネルは 1,000 人の企業幹部を対象に調査を実施し、現在および予想される AI のユースケース、導入の障壁、テクノロジー戦略、および人員計画に関する視点について尋ねました。専門家インタビューパネルの意見に基づくこの調査は、生成型人工知能に直面した企業の現在の主流の戦略的思考要素と視点を反映しており、経営幹部が重要な意思決定を行うプロセスを推論し、説明するのに役立ちます。
アンケートとインタビューの主な結果は次のとおりです:
経営陣は、生成 AI の変革の可能性を十分に認識していますが、その導入には慎重です。ほぼすべての企業が、生成 AI が自社のビジネスに影響を与えると考えており、影響がないと考えている企業は 4% のみでした。しかし現時点で、組織内に生成 AI ユースケースを完全に導入している企業はわずか 9% です。
この数字は政府部門ではわずか 2% ですが、金融サービス (17%) と IT (28%) はユースケース展開の割合が最も高い 2 つの業界です。 AI 導入における最大の障壁は生成型 AI のリスクを理解することであり、回答者の 59% が生成型 AI をトップ 3 の課題の 1 つとして挙げています。
(出典: 透かしを参照)同時に、企業は単独で戦うことはありません。 AI技術をスムーズに拡大するには、スタートアップ企業や大手テクノロジー企業との連携が不可欠です。経営幹部の大多数 (75%) は、パートナーと協力して生成 AI を組織に大規模に導入することを計画していますが、テクノロジ導入の最大の課題としてコラボレーションを挙げているのは少数 (10%) です。これは、当社がコラボレーションと共創に利用できるテクノロジープロバイダーとサービスの強力なエコシステムを持っていることを示しています。
大手テクノロジー企業には、生成 AI モデルの開発者および AI ソフトウェアのプロバイダーとしてエコシステムの利点がありますが、スタートアップ企業にはいくつかの特殊なニッチ分野で利点があります。経営幹部は、大手テクノロジー企業 (32%) よりも、AI テクノロジーの特定の方向に焦点を当てている中小企業 (43%) と提携することを計画している可能性が高くなります。
生成 AI の適用により、経済全体が民主化されます。私たちの調査によると、企業が生成 AI を実験する可能性には、企業規模は関係ありません。中小企業 (年間収益 5 億ドル未満) は、中堅企業 (5 億ドルから 10 億ドル) の 3 倍の割合で生成 AI を導入しています (13% 対 4%)
実際、これらの中小企業は、大手企業 (収益 100 億ドルを超える企業) と同様の割合で AI テクノロジーを導入し、実験しています。
クラウド コンピューティングと同様に、中小企業を後押しできる手頃な価格の生成 AI ツール。これにより、企業は、かつてはハードウェアやテクノロジーに巨額の投資が必要だった、より多くのツールやコンピューティング リソースにアクセスできるようになります。
回答者の 4 分の 1 は、生成 AI の主な影響は従業員の削減であると予想しています。エネルギーおよび公益事業 (43%)、製造業 (34%)、運輸および物流業 (31%) などの産業部門では、この割合はさらに高くなります。この数字は IT および電気通信業界で最も低い (7%)
一般的に、人間が人工知能に置き換わることと比較すると、このデータ (割合) は許容範囲です。関連スキルの需要は、倫理やリスクに対処する管理職だけでなく、人工知能モデルの操作に重点を置いた技術分野でも増加しています。
人工知能は技術スキルを民主化し、新たな雇用の機会と従業員の満足度の向上につながる可能性があります。しかし、専門家は、生成 AI が適切に導入されず、有意義な相談がなければ、人間の労働体験の質を低下させる可能性があると警告しています。
規制問題は緊急を要するものですが、現時点では不確実性が最大の課題です。米国などの国の議員がリスクを回避しようとする中、生成 AI は政策決定活動を次々に引き起こしていますが、真に影響力のある規制は政府の法案と同じペースで (ゆっくりと) 前進するでしょう一方、多くのビジネス リーダー (40%) は、規制や規制上の不確実性への対処が、生成 AI の導入における大きな課題であると考えています。この割合は業界によって異なり、政府部門の 54% から IT および通信業界の 20% までの範囲です。
以上が中小企業は中堅企業に比べて大規模な生成 AI モデルを導入する可能性が 3 倍高いことが調査で明らかになりましたの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









大統領の科学技術顧問評議会によって設立された生成 AI ワーキング グループは、人工知能分野における主要な機会とリスクの評価を支援し、これらの技術が公正かつ安全に開発および導入されるようにするためのアドバイスを大統領に提供することを目的としています。 、そして可能な限り責任を持って。 AMD CEOのLisa Su氏とGoogle Cloudの最高情報セキュリティ責任者Phil Venables氏もワーキンググループのメンバーだ。中国系アメリカ人の数学者であり、フィールズ賞受賞者のテレンス・タオ氏。現地時間の5月13日、中国系アメリカ人の数学者でフィールズ賞受賞者のテレンス・タオ氏は、物理学者のローラ・グリーン氏と米国大統領科学技術諮問委員会(PCAST)の生成人工知能作業部会の共同リーダーに就任すると発表した。

画像出典@visualchinesewen|Wang Jiwei 「人間 + RPA」から「人間 + 生成 AI + RPA」へ、LLM は RPA の人間とコンピューターのインタラクションにどのような影響を与えますか?別の観点から見ると、人間とコンピューターの相互作用の観点から、LLM は RPA にどのような影響を与えるのでしょうか?プログラム開発やプロセス自動化における人間とコンピューターの対話に影響を与える RPA も、LLM によって変更される予定ですか? LLM は人間とコンピューターの相互作用にどのような影響を与えますか?生成 AI は RPA と人間とコンピューターのインタラクションをどのように変えるのでしょうか?詳細については、次の記事をご覧ください: 大規模モデルの時代が到来し、LLM に基づく生成 AI が RPA の人間とコンピューターのインタラクションを急速に変革しています。生成 AI は人間とコンピューターのインタラクションを再定義し、LLM は RPA ソフトウェア アーキテクチャの変化に影響を与えています。 RPA がプログラム開発と自動化にどのような貢献をしているかを尋ねると、答えの 1 つは人間とコンピューターの相互作用 (HCI、h) を変えたことです。

生成 AI は、テキスト、画像、音声、合成データなどのさまざまな種類のコンテンツを生成できる人間の人工知能テクノロジーの一種です。では、人工知能とは何でしょうか?人工知能と機械学習の違いは何ですか?人工知能は、コンピューター サイエンスの一分野であり、自律的に推論し、学習し、アクションを実行できるシステムであるインテリジェント エージェントの作成を研究する学問です。人工知能の核心は、人間のように考え、人間のように行動する機械を構築する理論と方法に関係しています。この分野では、機械学習 ML は人工知能の分野です。入力データに基づいてモデルをトレーニングするプログラムまたはシステムです。トレーニングされたモデルは、モデルがトレーニングされた統合データから派生した新しいデータまたは未確認のデータから有用な予測を行うことができます。

▲この写真はAIによって生成されたもので、九家楽、三味家、東宜日生などがすでに行動を起こしており、装飾・装飾業界チェーンはAIGCを大規模に導入している・装飾・装飾分野における生成AIの応用は何なのか?それはデザイナーにどのような影響を与えますか?レンダリングを生成するためのさまざまなデザイン ソフトウェアを 1 つの文で理解して別れを告げるための 1 つの記事です。ジェネレーティブ AI は、装飾と装飾の分野を破壊しています。人工知能を使用して機能を強化し、デザインの効率を向上させます。ジェネレーティブ AI は、装飾と装飾業界に革命をもたらしています。生成 AI は装飾および装飾業界に影響を与えますか?今後の開発動向はどうなるのでしょうか? LLM が装飾と装飾にどのような革命をもたらしているかを理解するための記事 1 つ. これらの 28 の人気の生成 AI 装飾デザイン ツールは試してみる価値があります. 記事/Wang Jiwei 装飾と装飾の分野では、最近 AIGC に関連するニュースがたくさんあります。 Colov が AI を活用した生成デザイン ツール Colov を発表

市場調査会社オムディアの新しいレポートによると、生成人工知能(GenAI)は2023年までに魅力的な技術トレンドとなり、教育を含む企業や個人に重要な応用をもたらすと予想されている。通信分野では、GenAI のユース ケースは主に、パーソナライズされたマーケティング コンテンツの配信や、顧客エクスペリエンスを向上させるためのより洗練された仮想アシスタントのサポートに焦点を当てています。ネットワーク運用における生成 AI の適用は明らかではありませんが、EnterpriseWeb は興味深いコンセプトを開発しました。現場での生成 AI の可能性、ネットワーク オートメーションにおける生成 AI の機能と限界の実証 ネットワーク運用における生成 AI の初期の応用例の 1 つは、ネットワーク要素のインストールを支援するエンジニアリング マニュアルに代わる対話型ガイダンスの使用でした。

Amazon Cloud Technology Greater China 戦略事業開発部ゼネラルマネージャー、Gu Fan 氏 2023 年には、大規模言語モデルと生成 AI が世界市場で「急増」し、AI における「圧倒的な」後続を引き起こすだけでなく、クラウドコンピューティング業界だけでなく、製造大手の業界への参入も精力的に誘致しています。ハイアール イノベーション デザイン センターは、国内初の AIGC 工業デザイン ソリューションを作成し、設計サイクルを大幅に短縮し、概念設計コストを削減しました。全体の概念設計が 83% 高速化されただけでなく、統合レンダリング効率が約 90% 向上しました。問題の解決には、人件費が高く、設計段階でのコンセプトの成果と承認の効率が低いことが含まれます。シーメンス中国のインテリジェント知識ベースと独自モデルに基づくインテリジェント会話ロボット「Xiaoyu」は、自然言語処理、知識ベース検索、データによるビッグ言語トレーニングを備えています

大型モデルの実装が加速しており、「産業上の実用性」が開発のコンセンサスとなっています。 2024 年 5 月 17 日、Tencent Cloud Generative AI Industry Application Summit が北京で開催され、大規模モデル開発とアプリケーション製品における一連の進歩が発表されました。 Tencent の Hunyuan ラージ モデル機能はアップグレードを続けており、モデル hunyuan-pro、hunyuan-standard、および hunyuan-lite の複数のバージョンが Tencent Cloud を通じて外部に公開されており、さまざまなシナリオで企業顧客や開発者のモデル ニーズを満たし、実装されています。最適なコスト効率の高いモデル ソリューション。 Tencent Cloud は、大規模モデル用のナレッジ エンジン、画像作成エンジン、ビデオ作成エンジンの 3 つの主要ツールをリリースし、大規模モデル時代のネイティブ ツール チェーンを作成し、PaaS サービスを通じてデータ アクセス、モデルの微調整、およびアプリケーション開発プロセスを簡素化します。企業を助けるために

人工知能の台頭により、ソフトウェア開発の急速な発展が促進されています。この強力なテクノロジーは、ソフトウェアの構築方法に革命をもたらす可能性があり、設計、開発、テスト、展開のあらゆる側面に広範囲に影響を与えます。動的なソフトウェア開発の分野に参入しようとしている企業にとって、生成人工知能テクノロジーの出現は、前例のない開発の機会を提供します。この最先端のテクノロジーを開発プロセスに組み込むことで、企業は生産効率を大幅に向上させ、製品の市場投入までの時間を短縮し、競争の激しいデジタル市場で目立つ高品質のソフトウェア製品を発売することができます。マッキンゼーのレポートによると、生成人工知能の市場規模は 2031 年までに 4 兆 4,000 億米ドルに達すると予測されています。この予測はトレンドを反映しているだけでなく、テクノロジーとビジネスの状況も示しています。
