Python でデータの集計とグループ化を行う方法
Python でデータを集計およびグループ化する方法
データ分析および処理のプロセスでは、多くの場合、データを集計してグループ化する必要があります。 Python は、データの集計とグループ化の操作を容易にするさまざまな強力なライブラリとツールを提供します。この記事では、Python でデータの集計とグループ化に pandas ライブラリを使用する方法を紹介し、具体的なコード例を示します。
1. データ集約
データ集約は、複数のデータを 1 つまたは少数のデータにマージする操作です。 Python では、データ集計に pandas ライブラリの groupby() 関数を使用できます。
サンプルコードは次のとおりです。
import pandas as pd # 创建一个示例数据集 data = pd.DataFrame({'A': ['apple', 'orange', 'banana', 'apple', 'banana'], 'B': ['red', 'orange', 'yellow', 'green', 'yellow'], 'C': [1, 2, 3, 4, 5]}) # 按照A列进行聚合,计算C列的总和 result = data.groupby('A')['C'].sum() print(result)
上記のコードを実行すると、出力結果は次のようになります。
A apple 5 banana 8 orange 2 Name: C, dtype: int64
このうち、groupby()関数は以下のように集計を指定しています。 「A」列に追加すると、sum( ) 関数は列「C」の合計を計算します。
2. データのグループ化
データのグループ化とは、データを一定の基準に従ってグループ化する操作です。同様に、Python では、pandas ライブラリの groupby() 関数を使用してデータをグループ化できます。
import pandas as pd # 创建一个示例数据集 data = pd.DataFrame({'A': ['apple', 'orange', 'banana', 'apple', 'banana'], 'B': ['red', 'orange', 'yellow', 'green', 'yellow'], 'C': [1, 2, 3, 4, 5]}) # 按照A列进行分组 grouped_data = data.groupby('A') # 遍历每个组 for name, group in grouped_data: print(name) print(group) print()
サンプル コードは次のとおりです。
apple A B C 0 apple red 1 3 apple green 4 banana A B C 2 banana yellow 3 4 banana yellow 5 orange A B C 1 orange orange 2
上記のコードを実行すると、出力結果は次のようになります。
import pandas as pd # 创建一个示例数据集 data = pd.DataFrame({'Category': ['Fruit', 'Vegetable', 'Fruit', 'Vegetable', 'Fruit'], 'Product': ['Apple', 'Carrot', 'Orange', 'Broccoli', 'Banana'], 'Sales': [100, 200, 150, 250, 120]}) # 按照Category列进行分组,并计算Sales列的总和 result = data.groupby('Category')['Sales'].sum() print(result)
groupby() 関数を使用してデータをグループ化します。 「A」列に移動し、各グループと出力を横断します。ご覧のとおり、データは列「A」のさまざまな値に従って正常にグループ化され、出力されています。
3. データの集約とグループ化の組み合わせ適用
実際のデータ処理では、集約とグループ化を組み合わせることが必要になることがよくあります。たとえば、売上データ セットでは、さまざまな製品カテゴリごとにグループ化し、各カテゴリの総売上高を計算できます。
サンプル コードは次のとおりです。
Category Fruit 370 Vegetable 450 Name: Sales, dtype: int64
上記のコードを実行すると、出力結果は次のようになります。
rrreee上記のコードでは、最初に groupby() を使用します。関数を使用して「Category」列グループに従ってデータを並べ替えてから、sum() 関数を使用して各カテゴリの合計売上高を計算します。
概要:
この記事では、Python でデータの集計とグループ化に pandas ライブラリを使用する方法を紹介します。 groupby() 関数を使用すると、データを集計およびグループ化でき、他の関数と組み合わせてより複雑な操作を実行できます。データの集計とグループ化はデータ処理における重要なステップであり、データ分析と統計に非常に役立ちます。この記事が Python でのデータ集計とグループ化に携わる皆様のお役に立てれば幸いです。
以上がPython でデータの集計とグループ化を行う方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

VSコード拡張機能は、悪意のあるコードの隠れ、脆弱性の活用、合法的な拡張機能としての自慰行為など、悪意のあるリスクを引き起こします。悪意のある拡張機能を識別する方法には、パブリッシャーのチェック、コメントの読み取り、コードのチェック、およびインストールに注意してください。セキュリティ対策には、セキュリティ認識、良好な習慣、定期的な更新、ウイルス対策ソフトウェアも含まれます。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

VSコードはWindows 8で実行できますが、エクスペリエンスは大きくない場合があります。まず、システムが最新のパッチに更新されていることを確認してから、システムアーキテクチャに一致するVSコードインストールパッケージをダウンロードして、プロンプトとしてインストールします。インストール後、一部の拡張機能はWindows 8と互換性があり、代替拡張機能を探すか、仮想マシンで新しいWindowsシステムを使用する必要があることに注意してください。必要な拡張機能をインストールして、適切に動作するかどうかを確認します。 Windows 8ではVSコードは実行可能ですが、開発エクスペリエンスとセキュリティを向上させるために、新しいWindowsシステムにアップグレードすることをお勧めします。

VSコードでは、次の手順を通じて端末でプログラムを実行できます。コードを準備し、統合端子を開き、コードディレクトリが端末作業ディレクトリと一致していることを確認します。プログラミング言語(pythonのpython your_file_name.pyなど)に従って実行コマンドを選択して、それが正常に実行されるかどうかを確認し、エラーを解決します。デバッガーを使用して、デバッグ効率を向上させます。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。
