ホームページ バックエンド開発 Python チュートリアル Python でデータの信頼性検証とモデル評価を実行する方法

Python でデータの信頼性検証とモデル評価を実行する方法

Oct 20, 2023 pm 04:06 PM
python データ検証 モデルの評価

Python でデータの信頼性検証とモデル評価を実行する方法

Python でデータ信頼性検証とモデル評価を実行する方法

データ信頼性検証とモデル評価は、機械学習とデータ サイエンス モデルのステップを使用する場合に非常に重要です。この記事では、データの信頼性検証とモデル評価に Python を使用する方法と、具体的なコード例を紹介します。

データ信頼性検証
データ信頼性検証とは、品質と信頼性を判断するために使用されるデータの検証を指します。一般的に使用されるデータの信頼性検証方法は次のとおりです。

  1. 欠損値チェック
    欠損値とは、データ内の一部のフィールドまたは特徴が空であるか欠落している状況を指します。データに欠損値があるかどうかを確認するには、Pandas ライブラリの isnull() または isna() 関数を使用できます。サンプル コードは次のとおりです。
import pandas as pd

# 读取数据
data = pd.read_csv('data.csv')

# 检查缺失值
missing_values = data.isnull().sum()
print(missing_values)
ログイン後にコピー
  1. 外れ値の検出
    外れ値とは、データ内に異常な関係または極端な値がある状況を指します。外れ値は、箱ひげ図、散布図、Z スコアなどの方法を使用して検出できます。以下は、箱ひげ図を使用した外れ値検出のサンプル コードです。
import seaborn as sns

# 读取数据
data = pd.read_csv('data.csv')

# 绘制箱线图
sns.boxplot(x='feature', data=data)
ログイン後にコピー
  1. データ分布チェック
    データ分布とは、さまざまな特徴に関するデータの分布を指します。データの分布は、ヒストグラムや密度プロットなどの方法を使用して調べることができます。以下は、Seaborn ライブラリの distplot() 関数を使用してデータ分布プロットをプロットするコード例です。
import seaborn as sns

# 读取数据
data = pd.read_csv('data.csv')

# 绘制数据分布图
sns.distplot(data['feature'], kde=False)
ログイン後にコピー

モデル評価 (モデル評価)
モデル評価は、機械学習を使用する場合です。またはデータ サイエンス モデル パフォーマンスを評価および比較するプロセス。一般的に使用されるモデル評価指標の一部を以下に示します。

  1. 精度 (精度)
    精度とは、モデルによって予測された結果のうち、正しく予測されたサンプルの割合を指します。精度は、Scikit-learn ライブラリの activity_score() 関数を使用して計算できます。サンプル コードは次のとおりです。
from sklearn.metrics import accuracy_score

# 真实标签
y_true = [0, 1, 1, 0, 1]

# 预测标签
y_pred = [0, 1, 0, 0, 1]

# 计算准确率
accuracy = accuracy_score(y_true, y_pred)
print(accuracy)
ログイン後にコピー
  1. 精度と再現率
    精度とは、モデルによって陽性であると予測されたサンプルのうち、実際に陽性であるサンプルの割合を指し、再現率は次のことを指します。モデルによって陽性であると予測される、真に陽性のサンプルの割合。適合率と再現率は、Scikit-learn ライブラリの precision_score() 関数と remember_score() 関数を使用してそれぞれ計算できます。サンプル コードは次のとおりです。
from sklearn.metrics import precision_score, recall_score

# 真实标签
y_true = [0, 1, 1, 0, 1]

# 预测标签
y_pred = [0, 1, 0, 0, 1]

# 计算精确率
precision = precision_score(y_true, y_pred)

# 计算召回率
recall = recall_score(y_true, y_pred)

print(precision, recall)
ログイン後にコピー
  1. F1 スコア (F1-Score)
    F1 スコアは、精度と再現率の加重調和平均であり、精度と再現率を考慮できます。パフォーマンス。 F1 スコアは、Scikit-learn ライブラリの f1_score() 関数を使用して計算できます。サンプル コードは次のとおりです。
from sklearn.metrics import f1_score

# 真实标签
y_true = [0, 1, 1, 0, 1]

# 预测标签
y_pred = [0, 1, 0, 0, 1]

# 计算F1分数
f1 = f1_score(y_true, y_pred)
print(f1)
ログイン後にコピー

要約すると、この記事では、データの信頼性検証とモデル評価に Python を使用する方法を紹介し、具体的なコード例を示します。データの信頼性検証やモデルの評価を行うことで、データの品質やモデルの性能の信頼性を確保し、機械学習やデータサイエンスの適用効果を向上させることができます。

以上がPython でデータの信頼性検証とモデル評価を実行する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

hadidb:pythonの軽量で水平方向にスケーラブルなデータベース hadidb:pythonの軽量で水平方向にスケーラブルなデータベース Apr 08, 2025 pm 06:12 PM

hadidb:軽量で高レベルのスケーラブルなPythonデータベースHadIDB(HadIDB)は、Pythonで記述された軽量データベースで、スケーラビリティが高くなっています。 PIPインストールを使用してHADIDBをインストールする:PIPINSTALLHADIDBユーザー管理CREATEユーザー:CREATEUSER()メソッド新しいユーザーを作成します。 Authentication()メソッドは、ユーザーのIDを認証します。 fromhadidb.operationimportuseruser_obj = user( "admin"、 "admin")user_obj。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

MongoDBデータベースパスワードを表示するNAVICATの方法 MongoDBデータベースパスワードを表示するNAVICATの方法 Apr 08, 2025 pm 09:39 PM

Hash値として保存されているため、Navicatを介してMongoDBパスワードを直接表示することは不可能です。紛失したパスワードを取得する方法:1。パスワードのリセット。 2。構成ファイルを確認します(ハッシュ値が含まれる場合があります)。 3.コードを確認します(パスワードをハードコードできます)。

Amazon AthenaでAWS接着クローラーの使用方法 Amazon AthenaでAWS接着クローラーの使用方法 Apr 09, 2025 pm 03:09 PM

データの専門家として、さまざまなソースから大量のデータを処理する必要があります。これは、データ管理と分析に課題をもたらす可能性があります。幸いなことに、AWS GlueとAmazon Athenaの2つのAWSサービスが役立ちます。

高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? 高負荷アプリケーションのMySQLパフォーマンスを最適化する方法は? Apr 08, 2025 pm 06:03 PM

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

Redisでサーバーを開始する方法 Redisでサーバーを開始する方法 Apr 10, 2025 pm 08:12 PM

Redisサーバーを起動する手順には、以下が含まれます。オペレーティングシステムに従ってRedisをインストールします。 Redis-Server(Linux/Macos)またはRedis-Server.exe(Windows)を介してRedisサービスを開始します。 Redis-Cli ping(Linux/macos)またはRedis-Cli.exePing(Windows)コマンドを使用して、サービスステータスを確認します。 Redis-Cli、Python、node.jsなどのRedisクライアントを使用して、サーバーにアクセスします。

Redisキューの読み方 Redisキューの読み方 Apr 10, 2025 pm 10:12 PM

Redisのキューを読むには、キュー名を取得し、LPOPコマンドを使用して要素を読み、空のキューを処理する必要があります。特定の手順は次のとおりです。キュー名を取得します:「キュー:キュー」などの「キュー:」のプレフィックスで名前を付けます。 LPOPコマンドを使用します。キューのヘッドから要素を排出し、LPOP Queue:My-Queueなどの値を返します。空のキューの処理:キューが空の場合、LPOPはnilを返し、要素を読む前にキューが存在するかどうかを確認できます。

See all articles