ChatGPT に基づく自動筆記システムの開発: Python が創造性を解き放つ
ChatGPT に基づく自動筆記システムの開発: Python が創造性を解放します
1. はじめに
自動筆記システムは、人工知能技術を使用して、記事、詩、物語、その他の文学作品。人工知能技術の急速な発展に伴い、近年ChatGPTをベースとした自動筆記システムが広く注目を集めています。この記事では、ChatGPTをベースにした自動筆記システムの開発方法と具体的なコード例を紹介します。
2. ChatGPT の概要
ChatGPT は、OpenAI によって 2020 年に開始された、生成事前学習モデルに基づいたチャット エージェント システムです。大規模なテキスト データの事前トレーニングを通じて、強力な言語理解と生成機能を備えています。ユーザー入力に基づいて対応するテキストを生成できるように、ChatGPT に基づいて微調整できます。
3. データの準備
自動筆記システムを開発するには、まず教師データを準備する必要があります。文学作品、詩、物語などの大量のテキストデータを教師データとしてインターネットからクロールできます。このデータをテキスト ファイルに編成し、各行を文または段落にします。
4. モデル トレーニング
モデル トレーニングに Python を使用するコード例は次のとおりです:
import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel from torch.utils.data import Dataset, DataLoader class TextDataset(Dataset): def __init__(self, data_path, tokenizer): self.tokenizer = tokenizer self.data = [] with open(data_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip() if line: self.data.append(line) def __len__(self): return len(self.data) def __getitem__(self, index): text = self.data[index] input_ids = self.tokenizer.encode(text, add_special_tokens=True, truncation=True) return torch.tensor(input_ids, dtype=torch.long) def collate_fn(data): input_ids = torch.stack([item for item in data]) attention_mask = input_ids.ne(0).float() return {'input_ids': input_ids, 'attention_mask': attention_mask} data_path = 'train.txt' tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') dataset = TextDataset(data_path, tokenizer) dataloader = DataLoader(dataset, batch_size=4, collate_fn=collate_fn, shuffle=True) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) for epoch in range(5): total_loss = 0.0 for batch in dataloader: batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch, labels=batch['input_ids']) loss = outputs.loss total_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch:', epoch, ' Loss:', total_loss)
トレーニング プロセス中に、GPT2Tokenizer を使用してテキスト データを必要な入力形式に変換しました。トレーニングの微調整には GPT2LMHeadModel を使用します。
5. テキストの生成
モデルのトレーニングが完了したら、次のコードを使用してテキストを生成できます:
def generate_text(model, tokenizer, prompt, max_length=100): input_ids = tokenizer.encode(prompt, add_special_tokens=True, truncation=True, return_tensors='pt') input_ids = input_ids.to(device) output = model.generate(input_ids, max_length=max_length, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text prompt = '在一个阳光明媚的早晨,小明和小红走进了一家魔法书店,' generated_text = generate_text(model, tokenizer, prompt) print(generated_text)
このコードでは、指定されたプロンプトのテキスト。生成されたテキストは、さらなる作成や変更のための創造的なインスピレーションの源として使用できます。
6. 最適化と改善
生成されるテキストの品質を向上させるために、テキストを複数回生成し、最適な段落を選択することで結果を改善できます。モデルのハイパーパラメーターを調整し、トレーニング データの量を増やすことによって、モデルのパフォーマンスを向上させることもできます。
7. 概要
この記事の導入部を通じて、ChatGPT に基づく自動筆記システムを開発する方法を学びました。 ChatGPT モデルをトレーニングし、このモデルを使用してテキストを生成します。この自動執筆システムは、著者にインスピレーションを与え、執筆プロセス中に創造的な問題を解決するのに役立ちます。将来的には、このシステムをさらに研究および改善して、より正確かつ興味深いテキストを生成し、クリエイターの創造性をさらに解放できるようにする予定です。
以上がChatGPT に基づく自動筆記システムの開発: Python が創造性を解き放つの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









DALL-E 3は、前モデルより大幅に改良されたモデルとして2023年9月に正式導入されました。これは、複雑な詳細を含む画像を作成できる、これまでで最高の AI 画像ジェネレーターの 1 つと考えられています。ただし、発売当初は対象外でした

ChatGPT と Python の完璧な組み合わせ: インテリジェント カスタマー サービス チャットボットの作成 はじめに: 今日の情報化時代において、インテリジェント カスタマー サービス システムは企業と顧客の間の重要なコミュニケーション ツールとなっています。より良い顧客サービス体験を提供するために、多くの企業が顧客相談や質問応答などのタスクを完了するためにチャットボットに注目し始めています。この記事では、OpenAI の強力なモデル ChatGPT と Python 言語を使用して、インテリジェントな顧客サービス チャットボットを作成し、顧客サービスを向上させる方法を紹介します。

インストール手順: 1. ChatGTP ソフトウェアを ChatGTP 公式 Web サイトまたはモバイル ストアからダウンロードします; 2. それを開いた後、設定インターフェイスで言語を中国語を選択します; 3. ゲーム インターフェイスでヒューマン マシン ゲームを選択し、中国スペクトル; 4 . 起動後、チャット ウィンドウにコマンドを入力してソフトウェアを操作します。

この記事では、ChatGPT と Java を使用してインテリジェントなチャットボットを開発する方法を紹介し、いくつかの具体的なコード例を示します。 ChatGPT は、OpenAI によって開発された生成事前トレーニング トランスフォーマーの最新バージョンです。これは、自然言語を理解し、人間のようなテキストを生成できるニューラル ネットワーク ベースの人工知能テクノロジーです。 ChatGPT を使用すると、適応型チャットを簡単に作成できます

Python での sqrt() 関数の使用法とコード例 1. sqrt() 関数の関数と紹介 Python プログラミングにおいて、sqrt() 関数は math モジュール内の関数であり、その機能は次の平方根を計算することです。数。平方根は、数値をそれ自体で乗算すると数値の 2 乗に等しいことを意味します。つまり、x*x=n の場合、x は n の平方根になります。プログラム内で sqrt() 関数を使用すると、平方根を計算できます。 2. Python で sqrt() 関数を使用する方法、sq

chatgpt は中国でも使用できますが、香港やマカオでも登録できません。ユーザーが登録したい場合は、外国の携帯電話番号を使用して登録できます。登録プロセス中にネットワーク環境を切り替える必要があることに注意してください。外国のIP。

ChatGPT と Python を使用してユーザー意図認識機能を実装する方法 はじめに: 今日のデジタル時代において、人工知能技術はさまざまな分野で徐々に不可欠な部分になりました。その中で、自然言語処理 (Natural Language Processing、NLP) テクノロジーの開発により、機械が人間の言語を理解して処理できるようになります。 ChatGPT (Chat-GeneratingPretrainedTransformer) は、

ChatGPTPHP を使用してインテリジェントな顧客サービス ロボットを構築する方法 はじめに: 人工知能技術の発展に伴い、顧客サービスの分野でロボットの使用が増えています。 ChatGPTPHP を使用してインテリジェントな顧客サービス ロボットを構築すると、企業はより効率的でパーソナライズされた顧客サービスを提供できるようになります。この記事では、ChatGPTPHP を使用してインテリジェントな顧客サービス ロボットを構築する方法を紹介し、具体的なコード例を示します。 1. ChatGPTPHP をインストールし、ChatGPTPHP を使用してインテリジェントな顧客サービス ロボットを構築します。
