「お世辞」は RLHF モデルでは一般的であり、クロードから GPT-4 の影響を受けない人は誰もいません
AI サークルに所属しているか他の分野に所属しているかに関係なく、多かれ少なかれ大規模言語モデル (LLM) を使用したことがあります。LLM によってもたらされたさまざまな変化を誰もが賞賛しているとき、いくつかの大きな変化モデルの欠点が徐々に明らかになります。
たとえば、少し前に、Google DeepMind は、LLM が一般に人間の「お調子者」行動を示すこと、つまり、人間のユーザーの見解が客観的に間違っている場合があり、モデルも同様であることを発見しました。ユーザーの視点に従うように独自の応答を調整します。以下の図に示すように、ユーザーがモデルに 1 1=956446 を伝えると、モデルは人間の指示に従い、この答えが正しいと信じます。
##画像ソース https://arxiv.org/abs/2308.03958
実際、この現象は多くの地域で一般的です。 AIモデル、その理由は何ですか? AI スタートアップ Anthropic の研究者らはこの現象を分析し、「お世辞」は RLHF モデルの一般的な行動であり、これは人間が「お世辞」の反応を好むことが部分的に原因であると考えています。
論文アドレス: https://arxiv.org/pdf/2310.13548.pdf
接続具体的な研究プロセスを見てみましょう。
GPT-4 などの AI アシスタントは、より正確な回答を生成するようにトレーニングされており、その大部分が RLHF を使用しています。 RLHF を使用して言語モデルを微調整すると、人間によって評価されるモデルの出力の品質が向上します。このモデルは人間の評価者にとって魅力的な出力を生成できますが、実際には欠陥があるか、正しくありません。同時に、最近の研究では、RLHF でトレーニングされたモデルがユーザーと一致する回答を提供する傾向があることも示されています。
この現象をより深く理解するために、この研究ではまず、SOTA パフォーマンスを備えた AI アシスタントがさまざまな現実世界の環境で「お世辞」モデル応答を提供するかどうかを調査しました。 RLHF でトレーニングを受けた SOTA AI アシスタントは、自由形式のテキスト生成タスクにおいて一貫した「お世辞」パターンを示しました。お世辞は RLHF でトレーニングされたモデルに一般的な行動であると思われるため、この記事ではこのタイプの行動における人間の好みの役割についても調査します。
この記事では、嗜好データに存在する「お世辞」が RLHF モデルの「お世辞」につながるかどうかも調査し、最適化を進めると一部の形式の「お世辞」が増加することがわかりました。」 、しかし、他の形の「お世辞」は減少します。
大型モデルの「お世辞」の程度とその影響
大型モデルの「お世辞」の度合いを評価し分析するには現実生成への影響 Impact では、この研究では、Anthropic、OpenAI、Meta によってリリースされた大規模モデルの「お世辞」の程度をベンチマークしました。
具体的には、この研究では SycophancyEval 評価ベンチマークが提案されています。 SycophancyEval は、既存の大規模モデルの「お世辞」評価ベンチマークを拡張します。モデルに関して、この研究では特に claude-1.3 (Anthropic、2023)、claude-2.0 (Anthropic、2023)、GPT-3.5-turbo (OpenAI、2022)、GPT-4 (OpenAI、2023) を含む 5 つのモデルをテストしました。 )、llama-2-70b-chat(Touvron et al.、2023)。
ユーザーの好みに合わせる
ユーザーが大規模なモデルに、作品に関する自由形式のフィードバックを提供するよう依頼する場合の理論技術的には、議論の質は議論の内容によってのみ左右されますが、研究では、大規模モデルは、ユーザーが好む議論にはより肯定的なフィードバックを与え、ユーザーが嫌いな議論にはより否定的なフィードバックを与えることがわかりました。
以下の図 1 に示すように、テキスト段落に対する大規模モデルのフィードバックは、テキストの内容に依存するだけでなく、ユーザーの好みにも影響されます。
振り回されやすい
調査によると、たとえ規模が大きくてもモデルは正確な回答を提供し、その回答に対する自信を表明しますが、ユーザーが質問すると回答を変更したり、誤った情報を提供したりすることがよくあります。したがって、「お世辞」は大規模なモデル応答の信頼性と信頼性を損なう可能性があります。
ユーザーの信念と一致する回答を提供する
調査では、次のことが判明しました。自由回答型の質問と回答のタスクでは、大規模なモデルはユーザーの信念と一致する回答を提供する傾向があります。たとえば、以下の図 3 では、この「お世辞」動作により、LLaMA 2 の精度が 27% も低下しました。
#ユーザーエラーを模倣する
For To大規模なモデルがユーザーのエラーを繰り返すかどうかをテストするため、この研究では、大規模なモデルが誤って詩の作者を与えているかどうかを調査します。以下の図 4 に示すように、大規模モデルが詩の正しい作者を答えることができたとしても、ユーザーが間違った情報を与えたため、間違った答えを返すことになります。
言語モデルにおけるお世辞の理解
研究では、現実世界のさまざまな設定において、より多くのことが判明しました。大きなモデルは一貫した「お世辞」動作を示すため、これは RLHF の微調整によって引き起こされる可能性があると推測されます。したがって、この研究では、嗜好モデル (PM) をトレーニングするために使用される人間の嗜好データを分析します。
以下の図 5 に示すように、この研究では人間の好みのデータを分析し、どの機能がユーザーの好みを予測できるかを調査しました。
実験結果は、他の条件が等しい場合、モデルの応答における「お世辞」行動により、人間がその行動を好む可能性が高まることを示しています。反応、セックス。以下の図 6 に示すように、大規模モデルのトレーニングに使用される選好モデル (PM) は、大規模モデルの「お世辞」動作に複雑な影響を与えます。
最後に、研究者らは、人間と PM (優先モデル) モデルがどのくらいの頻度で、どのようにして真実に答える傾向があるかを調査しました。多くの?人間と PM モデルは、正しい応答よりもお世辞の応答を好むことが判明しました。
PM 結果: 95% のケースで、真実の応答よりもお世辞の応答が好まれました (図 7a)。この調査では、PM がほぼ半分 (45%) の時間でお世辞を言う反応を好むこともわかりました。
人間のフィードバック結果: 人間はお世辞よりも正直に反応する傾向がありますが、難易度 (誤解) が増すにつれて、信頼できる答えを選択する確率は減少します (図 7b)。複数の人の好みを集約することでフィードバックの質は向上しますが、これらの結果は、専門家ではない人間のフィードバックを使用するだけでお世辞を完全に排除するのは難しい可能性があることを示唆しています。
図 7c は、Claude 2 PM の最適化によりお世辞は減少しますが、その効果は顕著ではないことを示しています。
詳細については、原文をご覧ください。
以上が「お世辞」は RLHF モデルでは一般的であり、クロードから GPT-4 の影響を受けない人は誰もいませんの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、
